
CS4248 Project Report:
Enhancing Natural Language Inference with Machine-Generated

Explanations: A Comparative Study on Explanation Effectiveness in NLI
Tasks

A0216040Y, A0226576W, A0238913Y, A0194490X, A0221977W
Group 38

Mentored by Esther Gan
{e0538141,e0638862,e0773511,e0376920,e0559509}@u.nus.edu

Abstract

Research in Natural Language Inference (NLI)001
plays a pivotal role in advancing our under-002
standing of human language comprehension,003
which is crucial for applications like machine004
translation, sentiment analysis, and question005
answering. A key challenge in NLI is elucidat-006
ing the decision-making processes of models.007
The e-SNLI dataset (Camburu et al., 2018) fea-008
tures human-annotated explanations that jus-009
tify model decisions. However, the creation of010
these explanations is both time-consuming and011
labor-intensive. Our study explores whether012
machine-generated explanations, created using013
a GPT-2 model, can match or surpass the ef-014
fectiveness of human-annotated explanations in015
enhancing the performance of NLI tasks. We016
assess this impact using metrics such as ac-017
curacy, precision, F1-score, and BLEU score,018
revealing insights into the potential and limita-019
tions of machine-generated explanations.020

1 Introduction021

The field of Natural Language Inference (NLI) is022

fundamental to improving machine comprehen-023

sion of human language. NLI involves classify-024

ing relationships between premises and hypothe-025

ses into categories such as Entailment, Neutral,026

and Contradiction. Understanding these seman-027

tic relationships and logical coherences is crucial028

for enhancing Natural Language Understanding029

(NLU), which supports a variety of applications030

from semantic search to interactive dialogue sys-031

tems. This research investigates the potential of032

machine-generated explanations in NLI, aiming to033

streamline and possibly enhance the explanatory034

process that supports decision-making in AI sys-035

tems.036

1.1 Motivation037

The importance of NLI extends beyond theoretical038

research; it is crucial for enhancing AI’s capacity to039

process and understand human language accurately.040

The quality of explanations in NLI not only affects 041

the transparency but also the trustworthiness and re- 042

liability of AI decisions. Given the labor-intensive 043

nature of crafting human explanations, our moti- 044

vation is to explore whether AI can autonomously 045

generate high-quality explanations that are both ac- 046

curate and helpful for improving NLI models. This 047

could significantly reduce human effort and enable 048

more scalable NLI solutions, crucial for real-world 049

applications in sectors like education, healthcare, 050

and customer service 051

1.2 Key contributions 052

Despite existing research, there is still unexplored 053

potential in understanding the utility of machine- 054

generated explanations. This study addresses this 055

gap through comprehensive experiments aimed at 056

improving the generation and application of these 057

explanations in Natural Language Inference (NLI) 058

tasks. Our key contributions are: 059

1. Introducing a framework that leverages a GPT- 060

2 model to generate explanations for NLI 061

tasks, assessing whether AI can match human 062

performance in explanation quality. 063

2. Providing a comparative analysis of machine- 064

generated versus human-annotated explana- 065

tions, using metrics such as accuracy, preci- 066

sion, F1-score, and BLEU score to measure 067

effectiveness. 068

3. Highlighting the current limitations and po- 069

tential future applications of AI in automating 070

explanation generation, setting the stage for 071

further improvements and wider adoption in 072

practical AI applications. 073

2 Related Work / Background 074

The original paper that published the e-SNLI 075

dataset (Camburu et al., 2018) leveraged Amazon 076

Mechanical Turk to gather annotations and focused 077
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on encouraging annotators to provide explanations078

that highlight subtle elements influencing relation-079

ships between sentences. They ensured annotation080

quality through in-browser validation tools and a081

two-step process requiring annotators to first high-082

light pivotal words and then craft detailed expla-083

nations. Constraints varied depending on the type084

of relationship, which helped maintain high stan-085

dards in responses. This methodological rigor sets086

a benchmark in the field of explanation generation087

in NLI.088

Subsequent studies have explored the utility of089

explanations in enhancing various NLP tasks. For090

instance, (Rajani et al., 2019) integrated human091

explanations into the Common sense Question092

Answering (CQA) dataset (Talmor et al., 2019)093

and released their dataset (CoS-E). Their approach094

demonstrated a notable improvement, boosting095

CommonsenseQA task performance by 10%. This096

work underscores the potential of explanations in097

increasing the robustness of NLP models.098

Further research by (Narang et al., 2020) focused099

on creating quality explanations while (Thorne100

et al., 2019), (Rajagopal et al., 2021) focused on101

the explainability of generated explanations. Their102

work highlights ongoing challenges in ensuring that103

explanations genuinely reflect and justify model104

reasoning, an area that continues to offer signifi-105

cant opportunities for innovative research.106

Another piece of related work on the e-SNLI107

dataset is by (Zhou et al., 2023), employing108

a two-step methodology for generating explana-109

tions followed by fine-tuning a classifier using an110

explanation-aware prompt-based method. Their111

findings revealed that while the method holds112

promise, many generated explanations still fell113

short in justifying the classification decisions ade-114

quately, signaling a significant gap in the quality of115

generated explanations.116

3 Corpus Analysis117

3.1 Data exploration118

The training dataset comprises 549,367 entries,119

each consisting of a hypothesis, a premise, and120

an accompanying explanation. These entries are121

categorized into three distinct labels: entailment,122

contradiction, and neutral. These labels delineate123

the nature of the relationship between the premise124

and the hypothesis—specifically, whether the hy-125

pothesis entails, contradicts, or is neutral regarding126

the premise. The distribution of these categories is127

relatively balanced with 183,416 instances of en- 128

tailment, 183,187 of contradiction, and 182,764 of 129

neutral. 130

During the initial data processing, we identified 131

25 entries with missing explanations. Given the 132

minimal impact of these missing entries on the 133

overall dataset—representing less than 0.005% of 134

the total data—they were excluded from further 135

analysis. This decision ensures the integrity and 136

consistency of our training data, which is crucial 137

for maintaining the reliability of our model’s per- 138

formance evaluations. 139

4 Methodology 140

4.1 Classifier 141

In this study, we employed the RoBERTa1 model 142

as our primary classifier for this natural language 143

inference (NLI) task. 144

4.1.1 Model Rationale 145

The choice of RoBERTa was predicated on its ro- 146

bust pre-trained architecture and enhanced capacity 147

for processing context and semantics over its pre- 148

decessors, such as BERT (Bidirectional Encoder 149

Representations from Transformers). While both 150

RoBERTa and BERT are built on the transformer 151

architecture, RoBERTa is trained with a larger cor- 152

pus and for a longer duration, enabling it to excel 153

in tasks requiring deep contextual understanding. 154

4.1.2 Model Architecture & Implementation 155

Figure 1: RoBERTa Model Architecture

The initial stage of our pipeline involved tok- 156

enization using the RobertaTokenizerFast, which 157

efficiently handles the conversion of text into to- 158

kens that the model can process. Our input struc- 159

ture was carefully designed to maximize the con- 160

textual relations between the premise, hypothesis, 161

and explanation. We used the template: "Given 162

that [premise], it is hypothesized that [hypothesis]. 163

[explanation].” This format ensures that the model 164

recognizes and processes the logical flow intended 165

in NLI tasks, where understanding the causal and 166

1Hugging Face RoBERTa model
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contradictory elements between statements is cru-167

cial.168

We chose to freeze all layers of RoBERTa except169

for the classification head during fine-tuning. This170

strategy is particularly effective because it lever-171

ages the deep, context-aware embeddings learned172

during RoBERTa’s extensive pre-training across173

a vast corpus and variety of tasks, allowing the174

model to retain its pre-learned high-quality repre-175

sentations while focusing training on the high-level176

task of discerning entailment, contradiction, or neu-177

trality.178

Additionally, we modified the classifier by down-179

sizing the originally larger classification layer to a180

smaller, more efficient one. This adjustment was181

primarily aimed at reducing the computational load182

and enhancing the speed of the model. By mini-183

mizing the size of the final layer, we maintain the184

model’s ability to make fine-grained distinctions185

without the excessive computational cost typically186

associated with larger models. All code can be187

found in our GitHub2 repository.188

4.1.3 Evaluating predictions189

In evaluating our classifier model, we utilized a190

comprehensive set of metrics to ensure a balanced191

assessment of its performance in multi-class clas-192

sification settings. The Macro F1 Score treats193

all classes equally by averaging the individual F1194

scores, providing fairness across class representa-195

tion. The Micro F1 Score aggregates outcomes196

across all classes to reflect overall precision and197

recall, useful for assessing performance in domi-198

nant classes. The Weighted F1 Score adjusts each199

class’s F1 score according to its frequency, offer-200

ing a realistic view of performance based on class201

prevalence. Additionally, we used Accuracy for202

its straightforward depiction of the model’s overall203

correctness. This multi-metric approach not only204

enriches our understanding of the model’s effec-205

tiveness across varied scenarios but also helps in206

fine-tuning the model’s robustness and reliability207

across a spectrum of scenarios.208

4.2 Explanation Generator209

We chose GPT-2, which is a pre-trained large210

language model 3, as a medium to generate the211

machine-explanations using the premise, hypothe-212

sis and respective label as input.213

2GitHub repository
3GPT-2 Model Documentation

4.2.1 Model Rationale 214

The rationale for choosing GPT-2 model was 215

mainly because it employs a multi-layered trans- 216

former architecture that enables bidirectional con- 217

text understanding as well as efficient processing 218

of sequential data, which is important for the task 219

at hand to generate meaningful explanations. More- 220

over, being trained on diverse text data, it can cap- 221

ture a range of linguistic patterns and semantic 222

relationships to provide coherent text generation 223

capabilities. Also, GPT-2 allows a flexible archi- 224

tecture to fine-tune parameters with a self-attention 225

mechanism, which can be useful to experiment 226

around while monitoring model performance. 227

4.2.2 Model Architecture & Implementation 228

Figure 2: GPT Model Architecture

Before training, the hypothesis and premise were 229

converted to lowercase and the punctuation marks 230

were removed and a prompt is crafted using the 231

premise and hypothesis with regard to its respec- 232

tive label. With various trial-and-error to craft an 233

appropriate prompt, the below conditional prompts 234

were used to generate a reasoning: 235

• Entailment: "Explain why [premise] has to be 236

true when [hypothesis] is true?" 237

• Contradiction: "Explain why [premise] can- 238

not be true when [hypothesis] is true and vice 239

versa?" 240

• Neutral: "Explain why there is no evidence 241

that if [premise] is related to [hypothesis]?" 242

Each prompt was then encoded using the toeknizer: 243

GPT2Tokenizer to get an input sequence, which 244

was processed in an attention mask, which matches 245

the shape of the input sequence so that all tokens 246

get processed equally in the assigned order. Af- 247

terwhich, the model GPT2LMHeadModel was ini- 248

tialised which generates the explanations accord- 249

ingly with various parameters like maximum text 250

length, output diversity, randomness, token limits, 251

etc. The generated explanations were then post- 252

processed to remove redundant preceding words 253

for clarity, check for spelling and grammatical ac- 254

curacy to exceute a coherence check for logical 255
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flow of the generated explanation. Finally, these256

machine-generated explanations were combined257

with premise and hypothesis to feed in the baseline258

RoBERTa model for classification.259

Overall, we chose 2 variations of the GPT-2 mod-260

els (GPT-2 Base & GPT-2 Medium) with the moti-261

vation to improvise with the "medium" variant as it262

has larger capacity for learning and capturing com-263

plex patterns as compared to the base GPT-2 model.264

One of the quantitative differences between the two265

variants is that GPT-2 Medium loads more param-266

eters with deeper understanding of each, which267

increases the likelihood of better performance but268

augments to the additional computational require-269

ments.270

4.2.3 Evaluating explanations271

In evaluating the machine generated explanations,272

we used a variety of metrics designed to assess273

both the semantic and syntactic alignment with hu-274

man generated explanations. BLEU was chosen275

for its effectiveness in measuring the precision of276

n-grams, providing a basic gauge of lexical sim-277

ilarity. METEOR was included for its ability to278

account for synonymy and sentence structure, of-279

fering a more nuanced assessment of linguistic and280

semantic alignment. ROUGE-1 and ROUGE-L281

were utilized to evaluate the recall of content and282

the fluency of the explanations, respectively, re-283

flecting both detail retention and coherence. The284

BERT Score (covering Precision, Recall, and F1)285

provided insights into the deep semantic similar-286

ity by using contextual embeddings, ensuring that287

the explanations are semantically coherent with288

the references. Lastly, Word Mover’s Distance289

(WMD) was employed to measure the semantic290

distance between word embeddings in the gener-291

ated and reference texts, capturing the overall se-292

mantic alignment more effectively. These metrics293

together enabled a comprehensive evaluation of294

how well machine generated explanations mimic295

human reasoning in NLI tasks.296

5 Experiments297

5.1 Classifier Hyperparameter Tuning298

The Ray4 library was used to conduct hyperparam-299

eter tuning. The parameters adjusted included the300

learning rate, optimizer, training batch size, and301

weight decay, with the following values:302

• Learning Rate: [1e-6, 1e-5, 1e-4, 1e-3]303

4Ray

• Weight Decay: [0.01, 0.03, 0.05, 0.08, 0.1] 304

• Optimizer: ["AdamW", "SGD", "Adam"] 305

• Train Batch Size: [16, 32, 64] 306

The best parameter set determined from our tuning 307

efforts was 1e-3, 0.01, AdamW and 32 for the learn- 308

ing rate, weight decay, optimizer and train batch 309

size respectively. 310

5.2 Explanation Generator Hyperparameter 311

Tuning 312

For the explanation generator GPT-2 model, we 313

prepared 3 versions of the model: 314

• Model v1: base ’gpt-2’ model 315

• Model v2: fine-tuned base ’gpt-2’ model 316

• Model v3: fine-tuned ’gpt-2-medium’ model 317

Among these model variations, we standard- 318

ised the attention mask tensor as well as the 319

number of outputs generated per input to 1 320

(num_return_sequences=1) so that one good qual- 321

ity explanation can be generated at each instance. 322

On the other hand, we tested the effect of various 323

parameters like maximum length, generation of n- 324

grams, token limits based on probability, random- 325

ness. The tuning was performed on small batches 326

of the training set for the following values to moni- 327

tor their effect on the sensibility and relevance of 328

each explanation: 329

• Maximum length (max_length): [90,120,150] 330

• Randomness (temperature): [0.7,0.8,0.9] 331

• Token Limit using highest probabilities 332

(top_k): [10,50,90] 333

• Token Limit using cumulative probabilities 334

(top_p): [0.5, 0.95] 335

• N-grams (no_repeat_ngram_size): [1,2,3] 336

From the above settings, it was observed that the 337

combination of temperature, top_k and top_p val- 338

ues affected the diversity of the answers as they 339

affect the sampling strategy of the model. Whereas, 340

the length and n-gram parameters affected the level 341

of detail in each output. After testing these values, 342

we found the following best parameters in each 343

model variant for max_length, temperature, top_k, 344

top_p, no_repeat_ngram_size respectively: 345
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• GPT-2 Base (v2): 90,0.7,50,0.95,2346

• GPT-2 Medium (v3): 120,0.7,50,0.95,2347

One of the reasons that this setting worked the best348

was since the maximum length and randomness of349

the text generated was limited to a smaller threshold350

value, creating a smaller window for new tokens,351

allowing enough diverse outputs yet not making it352

too big to allow extremely random outputs which353

can reduce the coherence. While the token limit354

parameters (top_k and top_p) were expanded to a355

higher values since it allowed more top-performing356

words with higher probability to be added. Lastly,357

for the n-grams, setting to 2, that is, bigram worked358

best since it is avoiding repeating two consecutive359

tokens rather than the individual tokens. This in-360

creases the diversity yet avoiding any unnecessary361

repetitions or redundant phrases.362

5.3 Explanation Generator Evaluation363

Results364

In an attempt to enhance the clarity, gram-365

matical accuracy, and overall quality of the366

machine-generated explanations, we conducted367

post-processing on the generated explanations on368

all 3 versions of machine generated explanations.369

We employed several methods including spelling370

correction and the removal of redundant words.371

Here, we present the evaluation results using372

multiple metrics: BLEU (BL), METEOR (MT),373

ROUGE-1 (R1), ROUGE-L (RL), BERT Precision374

(BP), Recall (BR) and F1 Score (BF), and Word375

Mover’s Distance (WMD).376

Table 1: Evaluating explanations before Post-Processing

Version BL MT R1 RL BP BR BF WMD
v1 (raw) 0.005 0.093 0.065 0.046 0.803 0.849 0.825 1.150
v2 (raw) 0.030 0.159 0.176 0.139 0.831 0.860 0.846 0.985
v3 (raw) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006

Table 2: Evaluating explanations after Post-Processing

Version BL MT R1 RL BP BR BF WMD
v1 (spelling) 0.005 0.100 0.065 0.046 0.797 0.845 0.820 1.150
v1 (redundant) 0.005 0.096 0.067 0.046 0.802 0.846 0.823 1.149
v2 (spelling) 0.031 0.161 0.177 0.140 0.827 0.859 0.843 0.987
v2 (redundant) 0.030 0.159 0.176 0.139 0.831 0.860 0.846 0.985
v3 (spelling) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006
v3 (redundant) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006

As shown in Table 8, the application of spelling377

corrections (as observed in v1 and v2) showed a378

slight improvement in METEOR and BLEU scores,379

indicating better lexical accuracy and alignment380

with reference texts. However, the impact on BERT381

scores and WMD was minimal, suggesting that 382

while spelling improvements increase surface-level 383

quality, they do not significantly alter the semantic 384

content or the perceived distance between gener- 385

ated and reference explanations. 386

The removal of redundant words did not sig- 387

nificantly alter the performance metrics across all 388

versions. This outcome suggests that while redun- 389

dancy reduction may improve readability, it does 390

not substantially impact the metrics used for evalu- 391

ating the quality of explanations in terms of their 392

alignment with human-generated references. 393

Among the versions, v2 consistently showed bet- 394

ter performance across most metrics compared to 395

v1, which struggled particularly in terms of co- 396

herence and linguistic accuracy as indicated by 397

lower ROUGE and METEOR scores. v3 showed a 398

moderate performance, balancing between lexical 399

richness and semantic coherence. 400

The post-processing steps, particularly spelling 401

correction, have demonstrated their utility in 402

slightly improving the textual quality of generated 403

explanations. However, the minimal impact on 404

deeper semantic metrics like BERT Scores and 405

WMD suggests that future work should explore 406

more sophisticated techniques for enhancing the 407

relevance and depth of content in generated ex- 408

planations. These could include more advanced 409

linguistic models, better context integration, and 410

learning-based approaches to post-processing. 411

5.4 Classifier Experiments 412

In our classifier experiments, we conducted fine- 413

tuning on two different datasets: one containing 414

the original data and another supplemented with 415

machine-generated explanations. These explana- 416

tions were generated using two versions: v2 and v3. 417

The latter showed a slight performance increase of 418

1-2% over v2. However, due to the substantial com- 419

putational resources and memory required by the 420

v3’s underlying GPT-2 medium model, we opted 421

for v2 for its computational efficiency despite the 422

minor performance drop. 423

We evaluated these models against a baseline, 424

which was fine-tuned solely on the original dataset 425

without any explanations. This comparison was 426

crucial to assess the impact of explanations on the 427

model’s ability to make accurate predictions. Ac- 428

cording to the results captured in Table 3, it be- 429

came clear that while human-generated explana- 430

tions significantly enhance prediction accuracy, the 431
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machine-generated explanations, specifically from432

v2, actually deteriorated the performance of the433

model. This outcome underscores the variable in-434

fluence that the quality and source of explanations435

can have on NLI tasks, highlighting the importance436

of selecting appropriate explanation sources to op-437

timize model performance.438

Table 3: Classifier Results

Expt. Weighted F1 Micro F1 Macro F1 Acc.

1 0.937 0.937 0.936 0.94
2 0.456 0.452 0.448 0.45
3 0.549 0.498 0.446 0.50
4 0.543 0.534 0.524 0.53
Baseline 0.713 0.712 0.711 0.71

1. Fine-tune on original dataset, test on origi-439

nal test set: This setup achieved the highest440

scores across all metrics, indicating robust441

model performance when both trained and442

tested on human-curated data. The high scores443

reflect the model’s ability to adapt to the nu-444

ances and specific linguistic patterns present445

in the original dataset.446

2. Fine-tune on original dataset, test on447

machine-generated explanations: There448

was a substantial decrease in performance met-449

rics, likely due to the linguistic discrepancies450

between the training data (human-generated)451

and the test data (machine-generated). This452

indicates challenges in generalization when453

the test data introduce new linguistic features454

not present during training. Additionally,455

machine-generated text may have idiosyn-456

crasies such as repetitive phrases or less nat-457

ural syntax, which are not typically captured458

during training on human-curated content.459

3. Fine-tune on machine-generated dataset,460

test on original test set: In the experi-461

ment where the classifier was fine-tuned on a462

machine-generated dataset and tested on the463

original test set, we observed a significant464

drop in performance. This decline can be at-465

tributed to several factors:466

• The machine-generated dataset used for467

training was considerably smaller than468

the original dataset, creating a severe im-469

balance. This size discrepancy likely470

led to inadequate training, as the smaller 471

dataset did not provide enough diversity 472

and did not cover the full spectrum of fea- 473

tures and complexities that the original 474

dataset has. Consequently, this limita- 475

tion could have resulted in the model not 476

being adequately equipped to handle the 477

richer linguistic variety in the original 478

test set. 479

• Secondly, training exclusively on 480

machine-generated data may have 481

predisposed the model to learn patterns 482

and dependencies that are specific 483

to the generation algorithms rather 484

than those intrinsic to natural human 485

language. This can cause the model to 486

develop biases or overfit to artificial 487

characteristics that do not translate well 488

when confronted with human-generated 489

text. 490

4. Fine-tune on machine-generated dataset, 491

test on machine-generated test set: This 492

experiment resulted in a performance simi- 493

lar to experiment 3, but an improvement over 494

experiment 2. This suggests that while the 495

model could handle machine-generated con- 496

tent somewhat better when both trained and 497

tested on such data, it still struggles due to the 498

inherent limitations in the training data. 499

5.5 Classifier Results on Post-Processed 500

Explanations 501

We also explored how before and after post- 502

processing the explanations, it affected the perfor- 503

mance of a classifier that was fine-tuned on origi- 504

nal human-generated data and tested on machine- 505

generated explanations. This evaluation is crucial 506

as it explores the classifier’s adaptability to vari- 507

ations in explanation quality, which is key in ap- 508

plications like automated content generation and 509

evaluation. Given computational constraints, our 510

tests were limited to a sample size of 500 for each 511

explanation type. 512

In terms of classifier performance, the results 513

were mixed. While v3 of the generated explana- 514

tions, which featured the highest intrinsic quality, 515

benefited from spelling corrections with an im- 516

provement in accuracy and F1 scores, v1 and v2 517

showed minimal or no benefit from post-processing. 518

This indicates that the underlying quality of the 519

generated explanations is a more critical factor for 520
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Table 4: Classifier Performance for Generated Explana-
tions - before and after Post-Processing

Version Weighted F1 Micro F1 Macro F1 Accuracy
v1 (raw) 0.380 0.341 0.308 0.34
v1 (spelling) 0.411 0.339 0.272 0.34
v1 (redundant) 0.383 0.343 0.307 0.34
v2 (raw) 0.494 0.492 0.491 0.49
v2 (spelling) 0.483 0.478 0.474 0.48
v2 (redundant) 0.495 0.494 0.493 0.49
v3 (raw) 0.519 0.494 0.466 0.49
v3 (spelling) 0.511 0.512 0.512 0.51
v3 (redundant) 0.521 0.494 0.463 0.49

classifier performance than the application of su-521

perficial text corrections.522

These findings suggest that for developing robust523

NLI systems, greater emphasis should be placed524

on generating high-quality, coherent explanations525

right from the start, rather than relying on post-526

processing to correct minor flaws. Moreover, classi-527

fiers should be designed to be adaptive to variations528

in explanation quality to ensure consistent perfor-529

mance across different real-world scenarios where530

the quality of text can vary significantly. This ap-531

proach would not only improve the reliability of532

AI systems in NLI tasks but also enhance their533

applicability in diverse applications.534

6 Discussion535

Our experiments have highlighted the critical role536

that explanation quality plays in the performance of537

models tasked with understanding and interpreting538

relationships between texts. It became clear that539

human-generated explanations, which are meticu-540

lously vetted for relevance and coherence, consis-541

tently outperform machine-generated explanations542

from models like GPT-2. This discrepancy can543

largely be attributed to the self-attention mecha-544

nism of RoBERTa, which, when presented with545

inaccurate explanations, was "distracted," leading546

to incorrect inferences. To illustrate the potential547

for improvement, we generated additional exam-548

ples using GPT-4 with the same prompt template.549

These examples showed a marked improvement in550

the quality of explanations over those generated551

by GPT-2, indicating advancements in model capa-552

bilities for generating more contextually relevant553

explanations [5]. For detailed comparisons of ex-554

planations for identical premise-hypothesis pairs,555

see Appendix A.556

In an attempt to quantify the relevance and use-557

fulness of explanations in relation to the premise558

and hypothesis, we employed sentence embeddings.559

By concatenating the premise and hypothesis and560

encoding this combined text using a pretrained 561

sentence-BERT model5, we obtained a unified em- 562

bedding vector. A similar process was applied to 563

the explanations to generate a second vector, after 564

which we calculated the cosine similarity between 565

the two. This method was applied to the test set 566

with v2 explanations, and the summary statistics 567

for both correct and incorrect predictions were com- 568

piled [6]. 569

A subsequent T-test revealed no significant dif- 570

ference between the means, challenging our initial 571

hypothesis that sentence embeddings and cosine 572

similarity could effectively measure the utility of 573

an explanation. This unexpected result might be 574

explained by two factors: 575

• High cosine similarity scores do not necessar- 576

ily correlate with logical or factual correctness. 577

An explanation might echo the vocabulary and 578

context of the premise and hypothesis accu- 579

rately yet still derive incorrect conclusions. 580

• Conversely, a correct explanation might hinge 581

on a few pivotal terms from the premise and 582

hypothesis, guiding the model to the correct 583

answer but resulting in a lower than antici- 584

pated cosine similarity score for its sentence 585

embedding. 586

Despite these findings, the pursuit of methods to 587

evaluate the utility of generated explanations re- 588

mains worthwhile. Establishing a metric for im- 589

mediate evaluation of explanation quality can en- 590

able more efficient improvements in model training 591

and performance, bypassing the need for exten- 592

sive downstream testing. This approach not only 593

enhances the understanding of how explanations 594

impact model decision-making but also contributes 595

to the development of more reliable and transparent 596

AI systems. 597

7 Conclusion 598

In this project, we tackled Natural Language Infer- 599

ence (NLI) on the e-SNLI dataset using advanced 600

models like RoBERTa and GPT-2. Complementing 601

the knowledge we gained throughout the course, 602

this project helped us explore fundamental NLP 603

concepts such as tokenization, minimum edit dis- 604

tance while encouraging deeper exploration into 605

transformer architectures, attention mechanisms 606

5https://sbert.net/docs/pretrained_
models.html
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and sequence generation further. The project also607

allowed us to delve into the mechanics of sequence608

generation and to understand various evaluation609

metrics deeply.610

Through systematic experimentation, we as-611

sessed the capabilities and limitations of the mod-612

els used. This process highlighted several practical613

challenges and areas for potential improvement in614

NLI systems.615

7.1 Challenges & Limitations616

The project faced significant computational and617

methodological challenges:618

• The extensive dataset required substantial619

computational power, which limited the fre-620

quency and scope of our experiments. This621

was a critical bottleneck in testing and opti-622

mizing the models comprehensively.623

• Due to memory constraints, we were limited624

to using only the base and medium varia-625

tions of the GPT-2 model. Larger models,626

which might improve performance due to their627

greater capacity, were not feasible within our628

resource limits.629

• The GPT model functioned as a "black box,"630

making it challenging to predict or understand631

how changes in prompts might affect the out-632

put. This unpredictability necessitated a trial-633

and-error approach to optimize prompt design634

and model tuning.635

7.2 Future Improvements636

In response to the challenges and limitations en-637

countered in our current study, we propose the fol-638

lowing strategic improvements to enhance our re-639

search and application:640

• Optimizing Computational Resources: To641

manage the high computational demand ob-642

served, we propose the implementation of643

more efficient data processing and model train-644

ing techniques. Utilizing distributed comput-645

ing and scalable cloud-based GPU resources646

can help in mitigating computational con-647

straints. Additionally, adopting mixed pre-648

cision training could be a strategic move to de-649

crease memory usage while speeding up train-650

ing times, without significant performance651

trade-offs.652

• Exploring Larger Model Variants: Given the 653

constraints in exploring larger GPT-2 models 654

due to resource limitations, future initiatives 655

should focus on securing funding or form- 656

ing partnerships that provide access to en- 657

hanced computational facilities. This would 658

enable us to explore the potential benefits 659

of larger models such as GPT-2 Large and 660

XL. A phased scaling strategy—starting from 661

smaller models and incrementally moving to 662

larger ones—will allow for efficient resource 663

use and optimal model tuning. 664

• Enhancing Model Interpretability and Prompt 665

Engineering: To better understand the under- 666

lying mechanisms of the GPT model’s text 667

generation, we will integrate interpretability 668

tools such as feature visualization and atten- 669

tion mapping. This will assist in refining our 670

prompt engineering strategies. Furthermore, 671

automating the prompt generation and test- 672

ing process will streamline the trial-and-error 673

method, thus improving the overall efficiency 674

and effectiveness of model outputs. 675

• Expanding and Diversifying the Dataset: Our 676

dataset will be expanded to include more 677

diverse sources such as CoS-E and ECQA, 678

which contain a variety of explanation lengths 679

and formats. This expansion will aid in gen- 680

eralizing model performance across broader 681

datasets. Additionally, implementing data 682

augmentation strategies will simulate a larger 683

dataset, providing deeper insights into model 684

behaviors across diverse textual contexts. 685

• Implementing Incremental Learning: We 686

aim to incorporate incremental learning tech- 687

niques that allow the model to adapt to new 688

data continuously without losing previously 689

acquired knowledge. This approach is essen- 690

tial as we expand our dataset and integrate 691

evolving data types, thus maintaining a robust 692

learning trajectory. 693

• Benchmarking and Comparative Analysis: 694

Regular benchmarking against state-of-the-art 695

models will be conducted to ensure our mod- 696

els remain competitive and effective. Compar- 697

ative analysis will further allow us to under- 698

stand the performance variations across differ- 699

ent GPT model configurations and align our 700

strategies accordingly. 701
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Appendix761

Labels Precision Recall F1
Entailment 0.92 0.92 0.92
Neutral 0.78 0.96 0.86
Contradiction 0.96 0.73 0.83

Table 5: Test results using GPT-4 generated explana-
tions

type count mean std
Wrong label 253 0.469 0.153
Correct label 247 0.472 0.145

Table 6: Semantic similarity summary statistics

Table 7: Evaluating explanations before Post-Processing

Version BL MT R1 RL BP BR BF WMD
v1 (raw) 0.005 0.093 0.065 0.046 0.803 0.849 0.825 1.150
v2 (raw) 0.030 0.159 0.176 0.139 0.831 0.860 0.846 0.985
v3 (raw) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006

Table 8: Evaluating explanations after Post-Processing

Version BL MT R1 RL BP BR BF WMD
v1 (spelling) 0.005 0.100 0.065 0.046 0.797 0.845 0.820 1.150
v1 (redundant) 0.005 0.096 0.067 0.046 0.802 0.846 0.823 1.149
v2 (spelling) 0.031 0.161 0.177 0.140 0.827 0.859 0.843 0.987
v2 (redundant) 0.030 0.159 0.176 0.139 0.831 0.860 0.846 0.985
v3 (spelling) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006
v3 (redundant) 0.024 0.162 0.151 0.114 0.826 0.859 0.842 1.006

Table 9: Classifier Performance for Generated Explana-
tions - before and after Post-Processing

Version Weighted F1 Micro F1 Macro F1 Accuracy
v1 (raw) 0.380 0.341 0.308 0.34
v1 (spelling) 0.411 0.339 0.272 0.34
v1 (redundant) 0.383 0.343 0.307 0.34
v2 (raw) 0.494 0.492 0.491 0.49
v2 (spelling) 0.483 0.478 0.474 0.48
v2 (redundant) 0.495 0.494 0.493 0.49
v3 (raw) 0.519 0.494 0.466 0.49
v3 (spelling) 0.511 0.512 0.512 0.51
v3 (redundant) 0.521 0.494 0.463 0.49
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Table 10: Sample Explanations Generated by v2

Premise Hypothesis Machine Expla-
nation

GPT-4 Explana-
tion

Human Explana-
tion

A couple walk
hand in hand
down a street

A couple is walk-
ing together

The answer is
that the two are
walking hand-in-
hand (1) The two
walk hands in the
same direction.
(2) They are
both walking
hands- in opposite
directions. The
fact that they
are standing in a
straight line is not
a coincidence. It
is a fact

Walking together
as a couple in-
herently includes
walking hand
in hand if it is
specified they are
doing so; thus, if
it’s stated they are
walking together,
the scenario of
them walking
hand in hand fits
naturally within
that broader
description.

If a couple is walk-
ing hand in hand
it is implied that
they are walking
together.

A person dressed
in a dress with
flowers and a
stuffed bee at-
tached to it is
pushing a baby
stroller down the
street

A person outside
pushing a stroller

The answer is that
the person push-
ing the strollers is
not a child (em-
phasis added)

Pushing a stroller
outside aligns di-
rectly with the
more detailed sce-
nario of a person
in a specific out-
fit pushing a baby
stroller. The ad-
ditional details of
the dress and bee
do not affect the
truth of the basic
action of pushing
the stroller.

Pushing a stroller
down the street
implies that the
person is outside
pushing the
stroller.

Several women
are playing vol-
leyball

They women are
hitting a ball with
their arms

The answer is
that the women
who are doing
the hitting are
not playing the
ball. They are just
playing with the
arms (The women
in the video are
actually playing a
volleyball.),:"The
video shows that
women have a
tendency to hit
the balls with a lot

Playing volleyball
involves hitting
a ball with their
arms, which is a
central action in
volleyball. There-
fore, women
hitting a ball with
their arms directly
supports that
they are playing
volleyball.

For women to
play volleyball,
they must hit the
ball with their
arms.
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Premise Hypothesis Machine Expla-
nation

GPT-4 Explana-
tion

Human Explana-
tion

A person in a red
shirt is mowing
the grass with
a green riding
mower

A person in red is
swimming in the
olympics

The answer is that
the person who
is in an orange
shirt and is not in
any other color is
a mow the lawn
with the green
mowers. (See
also: "Why is it
that a man in blue
is wearing

Mowing the grass
with a mower
and swimming in
the Olympics are
activities that are
entirely distinct
and mutually
exclusive based
on both the nature
of the activities
and their settings.
If a person is
swimming in the
Olympics, they
cannot simultane-
ously be mowing
the lawn, and vice
versa.

One can’t be mow-
ing the grass and
swimming at the
same time.

The girls walk
down the street

Girls were going
to the park

The answer is that
the answer to that
question is not
clear (1) The girls
are walking down
a street. The
park is a public
place. It is the
place where the
children are going.
If the kids walk
up the sidewalk,
they are not going
down. They are
just

Walking down the
street does not
necessarily mean
the girls are going
to the park; they
could be headed
anywhere, and
without specific
information link-
ing their walk
to a destination
like the park,
the relationship
between these two
scenarios remains
speculative.

Girls walking
down the street
are not always
moving to park.
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