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Abstract

Research in Natural Language Inference (NLI)
plays a pivotal role in advancing our under-
standing of human language comprehension,
which is crucial for applications like machine
translation, sentiment analysis, and question
answering. A key challenge in NLI is elucidat-
ing the decision-making processes of models.
The e-SNLI dataset (Camburu et al., 2018) fea-
tures human-annotated explanations that jus-
tify model decisions. However, the creation of
these explanations is both time-consuming and
labor-intensive. Our study explores whether
machine-generated explanations, created using
a GPT-2 model, can match or surpass the ef-
fectiveness of human-annotated explanations in
enhancing the performance of NLI tasks. We
assess this impact using metrics such as ac-
curacy, precision, Fl-score, and BLEU score,
revealing insights into the potential and limita-
tions of machine-generated explanations.

1 Introduction

The field of Natural Language Inference (NLI) is
fundamental to improving machine comprehen-
sion of human language. NLI involves classify-
ing relationships between premises and hypothe-
ses into categories such as Entailment, Neutral,
and Contradiction. Understanding these seman-
tic relationships and logical coherences is crucial
for enhancing Natural Language Understanding
(NLU), which supports a variety of applications
from semantic search to interactive dialogue sys-
tems. This research investigates the potential of
machine-generated explanations in NLI, aiming to
streamline and possibly enhance the explanatory
process that supports decision-making in Al sys-
tems.

1.1 Motivation

The importance of NLI extends beyond theoretical
research; it is crucial for enhancing AI’s capacity to
process and understand human language accurately.

The quality of explanations in NLI not only affects
the transparency but also the trustworthiness and re-
liability of Al decisions. Given the labor-intensive
nature of crafting human explanations, our moti-
vation is to explore whether Al can autonomously
generate high-quality explanations that are both ac-
curate and helpful for improving NLI models. This
could significantly reduce human effort and enable
more scalable NLI solutions, crucial for real-world
applications in sectors like education, healthcare,
and customer service

1.2 Key contributions

Despite existing research, there is still unexplored
potential in understanding the utility of machine-
generated explanations. This study addresses this
gap through comprehensive experiments aimed at
improving the generation and application of these
explanations in Natural Language Inference (NLI)
tasks. Our key contributions are:

1. Introducing a framework that leverages a GPT-
2 model to generate explanations for NLI
tasks, assessing whether Al can match human
performance in explanation quality.

2. Providing a comparative analysis of machine-
generated versus human-annotated explana-
tions, using metrics such as accuracy, preci-
sion, F1-score, and BLEU score to measure
effectiveness.

3. Highlighting the current limitations and po-
tential future applications of Al in automating
explanation generation, setting the stage for
further improvements and wider adoption in
practical Al applications.

2 Related Work / Background

The original paper that published the e-SNLI
dataset (Camburu et al., 2018) leveraged Amazon
Mechanical Turk to gather annotations and focused



on encouraging annotators to provide explanations
that highlight subtle elements influencing relation-
ships between sentences. They ensured annotation
quality through in-browser validation tools and a
two-step process requiring annotators to first high-
light pivotal words and then craft detailed expla-
nations. Constraints varied depending on the type
of relationship, which helped maintain high stan-
dards in responses. This methodological rigor sets
a benchmark in the field of explanation generation
in NLI.

Subsequent studies have explored the utility of
explanations in enhancing various NLP tasks. For
instance, (Rajani et al., 2019) integrated human
explanations into the Common sense Question
Answering (CQA) dataset (Talmor et al., 2019)
and released their dataset (CoS-E). Their approach
demonstrated a notable improvement, boosting
CommonsenseQA task performance by 10%. This
work underscores the potential of explanations in
increasing the robustness of NLP models.

Further research by (Narang et al., 2020) focused
on creating quality explanations while (Thorne
et al., 2019), (Rajagopal et al., 2021) focused on
the explainability of generated explanations. Their
work highlights ongoing challenges in ensuring that
explanations genuinely reflect and justify model
reasoning, an area that continues to offer signifi-
cant opportunities for innovative research.

Another piece of related work on the e-SNLI
dataset is by (Zhou et al., 2023), employing
a two-step methodology for generating explana-
tions followed by fine-tuning a classifier using an
explanation-aware prompt-based method. Their
findings revealed that while the method holds
promise, many generated explanations still fell
short in justifying the classification decisions ade-
quately, signaling a significant gap in the quality of
generated explanations.

3 Corpus Analysis

3.1 Data exploration

The training dataset comprises 549,367 entries,
each consisting of a hypothesis, a premise, and
an accompanying explanation. These entries are
categorized into three distinct labels: entailment,
contradiction, and neutral. These labels delineate
the nature of the relationship between the premise
and the hypothesis—specifically, whether the hy-
pothesis entails, contradicts, or is neutral regarding
the premise. The distribution of these categories is

relatively balanced with 183,416 instances of en-
tailment, 183,187 of contradiction, and 182,764 of
neutral.

During the initial data processing, we identified
25 entries with missing explanations. Given the
minimal impact of these missing entries on the
overall dataset—representing less than 0.005% of
the total data—they were excluded from further
analysis. This decision ensures the integrity and
consistency of our training data, which is crucial
for maintaining the reliability of our model’s per-
formance evaluations.

4 Methodology

4.1 Classifier

In this study, we employed the RoOBERTa' model
as our primary classifier for this natural language
inference (NLI) task.

4.1.1 Model Rationale

The choice of ROBERTa was predicated on its ro-
bust pre-trained architecture and enhanced capacity
for processing context and semantics over its pre-
decessors, such as BERT (Bidirectional Encoder
Representations from Transformers). While both
RoBERTa and BERT are built on the transformer
architecture, ROBERTa is trained with a larger cor-
pus and for a longer duration, enabling it to excel
in tasks requiring deep contextual understanding.

4.1.2 Model Architecture & Implementation
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Figure 1: RoBERTa Model Architecture

The initial stage of our pipeline involved tok-
enization using the RobertaTokenizerFast, which
efficiently handles the conversion of text into to-
kens that the model can process. Our input struc-
ture was carefully designed to maximize the con-
textual relations between the premise, hypothesis,
and explanation. We used the template: "Given
that [premise], it is hypothesized that [hypothesis].
[explanation].” This format ensures that the model
recognizes and processes the logical flow intended
in NLI tasks, where understanding the causal and

"Hugging Face RoBERTa model
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contradictory elements between statements is cru-
cial.

We chose to freeze all layers of ROBERTa except
for the classification head during fine-tuning. This
strategy is particularly effective because it lever-
ages the deep, context-aware embeddings learned
during RoBERT2’s extensive pre-training across
a vast corpus and variety of tasks, allowing the
model to retain its pre-learned high-quality repre-
sentations while focusing training on the high-level
task of discerning entailment, contradiction, or neu-
trality.

Additionally, we modified the classifier by down-
sizing the originally larger classification layer to a
smaller, more efficient one. This adjustment was
primarily aimed at reducing the computational load
and enhancing the speed of the model. By mini-
mizing the size of the final layer, we maintain the
model’s ability to make fine-grained distinctions
without the excessive computational cost typically
associated with larger models. All code can be
found in our GitHub? repository.

4.1.3 Evaluating predictions

In evaluating our classifier model, we utilized a
comprehensive set of metrics to ensure a balanced
assessment of its performance in multi-class clas-
sification settings. The Macro F1 Score treats
all classes equally by averaging the individual F1
scores, providing fairness across class representa-
tion. The Micro F1 Score aggregates outcomes
across all classes to reflect overall precision and
recall, useful for assessing performance in domi-
nant classes. The Weighted F1 Score adjusts each
class’s F1 score according to its frequency, offer-
ing a realistic view of performance based on class
prevalence. Additionally, we used Accuracy for
its straightforward depiction of the model’s overall
correctness. This multi-metric approach not only
enriches our understanding of the model’s effec-
tiveness across varied scenarios but also helps in
fine-tuning the model’s robustness and reliability
across a spectrum of scenarios.

4.2 Explanation Generator

We chose GPT-2, which is a pre-trained large
language model 3, as a medium to generate the
machine-explanations using the premise, hypothe-
sis and respective label as input.

2GitHub repository
3GPT-2 Model Documentation

4.2.1 Model Rationale

The rationale for choosing GPT-2 model was
mainly because it employs a multi-layered trans-
former architecture that enables bidirectional con-
text understanding as well as efficient processing
of sequential data, which is important for the task
at hand to generate meaningful explanations. More-
over, being trained on diverse text data, it can cap-
ture a range of linguistic patterns and semantic
relationships to provide coherent text generation
capabilities. Also, GPT-2 allows a flexible archi-
tecture to fine-tune parameters with a self-attention
mechanism, which can be useful to experiment
around while monitoring model performance.

4.2.2 Model Architecture & Implementation
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Figure 2: GPT Model Architecture

Before training, the hypothesis and premise were
converted to lowercase and the punctuation marks
were removed and a prompt is crafted using the
premise and hypothesis with regard to its respec-
tive label. With various trial-and-error to craft an
appropriate prompt, the below conditional prompts
were used to generate a reasoning:

* Entailment: "Explain why [premise] has to be
true when [hypothesis] is true?"

* Contradiction: "Explain why [premise] can-
not be true when [hypothesis] is true and vice
versa?"

* Neutral: "Explain why there is no evidence
that if [premise] is related to [hypothesis]?"

Each prompt was then encoded using the toeknizer:
GPT21okenizer to get an input sequence, which
was processed in an attention mask, which matches
the shape of the input sequence so that all tokens
get processed equally in the assigned order. Af-
terwhich, the model GPT2LMHeadModel was ini-
tialised which generates the explanations accord-
ingly with various parameters like maximum text
length, output diversity, randomness, token limits,
etc. The generated explanations were then post-
processed to remove redundant preceding words
for clarity, check for spelling and grammatical ac-
curacy to exceute a coherence check for logical
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flow of the generated explanation. Finally, these
machine-generated explanations were combined
with premise and hypothesis to feed in the baseline
RoBERTa model for classification.

Overall, we chose 2 variations of the GPT-2 mod-
els (GPT-2 Base & GPT-2 Medium) with the moti-
vation to improvise with the "medium" variant as it
has larger capacity for learning and capturing com-
plex patterns as compared to the base GPT-2 model.
One of the quantitative differences between the two
variants is that GPT-2 Medium loads more param-
eters with deeper understanding of each, which
increases the likelihood of better performance but
augments to the additional computational require-
ments.

4.2.3 Evaluating explanations

In evaluating the machine generated explanations,
we used a variety of metrics designed to assess
both the semantic and syntactic alignment with hu-
man generated explanations. BLEU was chosen
for its effectiveness in measuring the precision of
n-grams, providing a basic gauge of lexical sim-
ilarity. METEOR was included for its ability to
account for synonymy and sentence structure, of-
fering a more nuanced assessment of linguistic and
semantic alignment. ROUGE-1 and ROUGE-L
were utilized to evaluate the recall of content and
the fluency of the explanations, respectively, re-
flecting both detail retention and coherence. The
BERT Score (covering Precision, Recall, and F1)
provided insights into the deep semantic similar-
ity by using contextual embeddings, ensuring that
the explanations are semantically coherent with
the references. Lastly, Word Mover’s Distance
(WMD) was employed to measure the semantic
distance between word embeddings in the gener-
ated and reference texts, capturing the overall se-
mantic alignment more effectively. These metrics
together enabled a comprehensive evaluation of
how well machine generated explanations mimic
human reasoning in NLI tasks.

5 Experiments

5.1 Classifier Hyperparameter Tuning

The Ray* library was used to conduct hyperparam-
eter tuning. The parameters adjusted included the
learning rate, optimizer, training batch size, and
weight decay, with the following values:

* Learning Rate: [1e-6, 1e-5, 1e-4, le-3]
“Ray

* Weight Decay: [0.01, 0.03, 0.05, 0.08, 0.1]
* Optimizer: ["AdamW", "SGD", "Adam"]
e Train Batch Size: [16, 32, 64]

The best parameter set determined from our tuning
efforts was 1e-3, 0.01, AdamW and 32 for the learn-
ing rate, weight decay, optimizer and train batch
size respectively.

5.2 Explanation Generator Hyperparameter
Tuning

For the explanation generator GPT-2 model, we

prepared 3 versions of the model:

* Model v1: base "gpt-2’ model
* Model v2: fine-tuned base "gpt-2” model
* Model v3: fine-tuned ’gpt-2-medium’ model

Among these model variations, we standard-
ised the attention mask tensor as well as the
number of outputs generated per input to 1
(num_return_sequences=1) so that one good qual-
ity explanation can be generated at each instance.
On the other hand, we tested the effect of various
parameters like maximum length, generation of n-
grams, token limits based on probability, random-
ness. The tuning was performed on small batches
of the training set for the following values to moni-
tor their effect on the sensibility and relevance of
each explanation:

* Maximum length (max_length): [90,120,150]
* Randomness (temperature): [0.7,0.8,0.9]

* Token Limit using highest probabilities
(top_k): [10,50,90]

* Token Limit using cumulative probabilities
(top_p): [0.5, 0.95]

* N-grams (no_repeat_ngram_size): [1,2,3]

From the above settings, it was observed that the
combination of temperature, top_k and top_p val-
ues affected the diversity of the answers as they
affect the sampling strategy of the model. Whereas,
the length and n-gram parameters affected the level
of detail in each output. After testing these values,
we found the following best parameters in each
model variant for max_length, temperature, top_k,
top_p, no_repeat_ngram_size respectively:
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¢ GPT-2 Base (v2): 90,0.7,50,0.95,2
¢ GPT-2 Medium (v3): 120,0.7,50,0.95,2

One of the reasons that this setting worked the best
was since the maximum length and randomness of
the text generated was limited to a smaller threshold
value, creating a smaller window for new tokens,
allowing enough diverse outputs yet not making it
too big to allow extremely random outputs which
can reduce the coherence. While the token limit
parameters (top_k and top_p) were expanded to a
higher values since it allowed more top-performing
words with higher probability to be added. Lastly,
for the n-grams, setting to 2, that is, bigram worked
best since it is avoiding repeating two consecutive
tokens rather than the individual tokens. This in-
creases the diversity yet avoiding any unnecessary
repetitions or redundant phrases.

5.3 Explanation Generator Evaluation
Results

In an attempt to enhance the clarity, gram-
matical accuracy, and overall quality of the
machine-generated explanations, we conducted
post-processing on the generated explanations on
all 3 versions of machine generated explanations.
We employed several methods including spelling
correction and the removal of redundant words.
Here, we present the evaluation results using
multiple metrics: BLEU (BL), METEOR (MT),
ROUGE-1 (R1), ROUGE-L (RL), BERT Precision
(BP), Recall (BR) and F1 Score (BF), and Word
Mover’s Distance (WMD).

Table 1: Evaluating explanations before Post-Processing

[Version [BL_|MT | RI_|RL [BP [BR | BF | WMD ]
VI (raw) | 0.005 | 0.093 | 0.065 | 0.046 | 0.803 | 0.849 | 0.825 | 1.150
V2 (raw) | 0.030 | 0.159 | 0.176 | 0.139 | 0.831 | 0.860 | 0.846 | 0.985
V3 (raw) | 0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006

Table 2: Evaluating explanations after Post-Processing

[ Version [BL_[MT |[RI_[RL [BP [BR [BF |WMD]
VI (spelling) | 0.005 | 0.100 | 0.065 | 0.046 | 0.797 | 0.845 | 0.820 | 1.150
vl (redundant) | 0.005 | 0.096 | 0.067 | 0.046 | 0.802 | 0.846 | 0.823 | 1.149
V2 (spelling) | 0.031 | 0.161 | 0.177 | 0.140 | 0.827 | 0.859 | 0.843 | 0.987

v2 (redundant) | 0.030 | 0.159 | 0.176 | 0.139 | 0.831 | 0.860 | 0.846 | 0.985

0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006
0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006

v3 (spelling)
v3 (redundant)

As shown in Table 8, the application of spelling
corrections (as observed in vl and v2) showed a
slight improvement in METEOR and BLEU scores,
indicating better lexical accuracy and alignment
with reference texts. However, the impact on BERT

scores and WMD was minimal, suggesting that
while spelling improvements increase surface-level
quality, they do not significantly alter the semantic
content or the perceived distance between gener-
ated and reference explanations.

The removal of redundant words did not sig-
nificantly alter the performance metrics across all
versions. This outcome suggests that while redun-
dancy reduction may improve readability, it does
not substantially impact the metrics used for evalu-
ating the quality of explanations in terms of their
alignment with human-generated references.

Among the versions, v2 consistently showed bet-
ter performance across most metrics compared to
vl1, which struggled particularly in terms of co-
herence and linguistic accuracy as indicated by
lower ROUGE and METEOR scores. v3 showed a
moderate performance, balancing between lexical
richness and semantic coherence.

The post-processing steps, particularly spelling
correction, have demonstrated their utility in
slightly improving the textual quality of generated
explanations. However, the minimal impact on
deeper semantic metrics like BERT Scores and
WMD suggests that future work should explore
more sophisticated techniques for enhancing the
relevance and depth of content in generated ex-
planations. These could include more advanced
linguistic models, better context integration, and
learning-based approaches to post-processing.

5.4 Classifier Experiments

In our classifier experiments, we conducted fine-
tuning on two different datasets: one containing
the original data and another supplemented with
machine-generated explanations. These explana-
tions were generated using two versions: v2 and v3.
The latter showed a slight performance increase of
1-2% over v2. However, due to the substantial com-
putational resources and memory required by the
v3’s underlying GPT-2 medium model, we opted
for v2 for its computational efficiency despite the
minor performance drop.

We evaluated these models against a baseline,
which was fine-tuned solely on the original dataset
without any explanations. This comparison was
crucial to assess the impact of explanations on the
model’s ability to make accurate predictions. Ac-
cording to the results captured in Table 3, it be-
came clear that while human-generated explana-
tions significantly enhance prediction accuracy, the



machine-generated explanations, specifically from
v2, actually deteriorated the performance of the
model. This outcome underscores the variable in-
fluence that the quality and source of explanations
can have on NLI tasks, highlighting the importance
of selecting appropriate explanation sources to op-
timize model performance.

Table 3: Classifier Results

Expt. Weighted F1 Micro F1 Macro F1 Acc.
1 0.937 0.937 0.936 0.94
2 0.456 0.452 0.448 0.45
3 0.549 0.498 0.446 0.50
4 0.543 0.534 0.524 0.53
Baseline 0.713 0.712 0.711 0.71

1. Fine-tune on original dataset, test on origi-
nal test set: This setup achieved the highest
scores across all metrics, indicating robust
model performance when both trained and
tested on human-curated data. The high scores
reflect the model’s ability to adapt to the nu-
ances and specific linguistic patterns present
in the original dataset.

2. Fine-tune on original dataset, test on
machine-generated explanations: There
was a substantial decrease in performance met-
rics, likely due to the linguistic discrepancies
between the training data (human-generated)
and the test data (machine-generated). This
indicates challenges in generalization when
the test data introduce new linguistic features
not present during training. Additionally,
machine-generated text may have idiosyn-
crasies such as repetitive phrases or less nat-
ural syntax, which are not typically captured
during training on human-curated content.

3. Fine-tune on machine-generated dataset,
test on original test set: In the experi-
ment where the classifier was fine-tuned on a
machine-generated dataset and tested on the
original test set, we observed a significant
drop in performance. This decline can be at-
tributed to several factors:

* The machine-generated dataset used for
training was considerably smaller than
the original dataset, creating a severe im-
balance. This size discrepancy likely

led to inadequate training, as the smaller
dataset did not provide enough diversity
and did not cover the full spectrum of fea-
tures and complexities that the original
dataset has. Consequently, this limita-
tion could have resulted in the model not
being adequately equipped to handle the
richer linguistic variety in the original
test set.

* Secondly, training exclusively on
machine-generated data may have
predisposed the model to learn patterns
and dependencies that are specific
to the generation algorithms rather
than those intrinsic to natural human
language. This can cause the model to
develop biases or overfit to artificial
characteristics that do not translate well
when confronted with human-generated
text.

4. Fine-tune on machine-generated dataset,
test on machine-generated test set: This
experiment resulted in a performance simi-
lar to experiment 3, but an improvement over
experiment 2. This suggests that while the
model could handle machine-generated con-
tent somewhat better when both trained and
tested on such data, it still struggles due to the
inherent limitations in the training data.

5.5 Classifier Results on Post-Processed
Explanations

We also explored how before and after post-
processing the explanations, it affected the perfor-
mance of a classifier that was fine-tuned on origi-
nal human-generated data and tested on machine-
generated explanations. This evaluation is crucial
as it explores the classifier’s adaptability to vari-
ations in explanation quality, which is key in ap-
plications like automated content generation and
evaluation. Given computational constraints, our
tests were limited to a sample size of 500 for each
explanation type.

In terms of classifier performance, the results
were mixed. While v3 of the generated explana-
tions, which featured the highest intrinsic quality,
benefited from spelling corrections with an im-
provement in accuracy and F1 scores, vl and v2
showed minimal or no benefit from post-processing.
This indicates that the underlying quality of the
generated explanations is a more critical factor for



Table 4: Classifier Performance for Generated Explana-
tions - before and after Post-Processing

[ Version [ Weighted F1 [ Micro F1 | Macro F1 [ Accuracy |

vl (raw) 0.380 0.341 0.308 0.34
vl (spelling) | 0.411 0.339 0.272 0.34
v1 (redundant) | 0.383 0.343 0.307 0.34
v2 (raw) 0.494 0.492 0.491 0.49
v2 (spelling) | 0.483 0.478 0.474 0.48
v2 (redundant) | 0.495 0.494 0.493 0.49
v3 (raw) 0.519 0.494 0.466 0.49
v3 (spelling) | 0.511 0.512 0.512 0.51
v3 (redundant) | 0.521 0.494 0.463 0.49

classifier performance than the application of su-
perficial text corrections.

These findings suggest that for developing robust
NLI systems, greater emphasis should be placed
on generating high-quality, coherent explanations
right from the start, rather than relying on post-
processing to correct minor flaws. Moreover, classi-
fiers should be designed to be adaptive to variations
in explanation quality to ensure consistent perfor-
mance across different real-world scenarios where
the quality of text can vary significantly. This ap-
proach would not only improve the reliability of
Al systems in NLI tasks but also enhance their
applicability in diverse applications.

6 Discussion

Our experiments have highlighted the critical role
that explanation quality plays in the performance of
models tasked with understanding and interpreting
relationships between texts. It became clear that
human-generated explanations, which are meticu-
lously vetted for relevance and coherence, consis-
tently outperform machine-generated explanations
from models like GPT-2. This discrepancy can
largely be attributed to the self-attention mecha-
nism of RoBERTa, which, when presented with
inaccurate explanations, was "distracted," leading
to incorrect inferences. To illustrate the potential
for improvement, we generated additional exam-
ples using GPT-4 with the same prompt template.
These examples showed a marked improvement in
the quality of explanations over those generated
by GPT-2, indicating advancements in model capa-
bilities for generating more contextually relevant
explanations [5]. For detailed comparisons of ex-
planations for identical premise-hypothesis pairs,
see Appendix A.

In an attempt to quantify the relevance and use-
fulness of explanations in relation to the premise
and hypothesis, we employed sentence embeddings.
By concatenating the premise and hypothesis and

encoding this combined text using a pretrained
sentence-BERT model’, we obtained a unified em-
bedding vector. A similar process was applied to
the explanations to generate a second vector, after
which we calculated the cosine similarity between
the two. This method was applied to the test set
with v2 explanations, and the summary statistics
for both correct and incorrect predictions were com-
piled [6].

A subsequent T-test revealed no significant dif-
ference between the means, challenging our initial
hypothesis that sentence embeddings and cosine
similarity could effectively measure the utility of
an explanation. This unexpected result might be
explained by two factors:

* High cosine similarity scores do not necessar-
ily correlate with logical or factual correctness.
An explanation might echo the vocabulary and
context of the premise and hypothesis accu-
rately yet still derive incorrect conclusions.

* Conversely, a correct explanation might hinge
on a few pivotal terms from the premise and
hypothesis, guiding the model to the correct
answer but resulting in a lower than antici-
pated cosine similarity score for its sentence
embedding.

Despite these findings, the pursuit of methods to
evaluate the utility of generated explanations re-
mains worthwhile. Establishing a metric for im-
mediate evaluation of explanation quality can en-
able more efficient improvements in model training
and performance, bypassing the need for exten-
sive downstream testing. This approach not only
enhances the understanding of how explanations
impact model decision-making but also contributes
to the development of more reliable and transparent
Al systems.

7 Conclusion

In this project, we tackled Natural Language Infer-
ence (NLI) on the e-SNLI dataset using advanced
models like ROBERTa and GPT-2. Complementing
the knowledge we gained throughout the course,
this project helped us explore fundamental NLP
concepts such as tokenization, minimum edit dis-
tance while encouraging deeper exploration into
transformer architectures, attention mechanisms

Shttps://sbert.net/docs/pretrained_
models.html


https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html

and sequence generation further. The project also
allowed us to delve into the mechanics of sequence
generation and to understand various evaluation
metrics deeply.

Through systematic experimentation, we as-
sessed the capabilities and limitations of the mod-
els used. This process highlighted several practical
challenges and areas for potential improvement in
NLI systems.

7.1 Challenges & Limitations

The project faced significant computational and
methodological challenges:

» The extensive dataset required substantial
computational power, which limited the fre-
quency and scope of our experiments. This
was a critical bottleneck in testing and opti-
mizing the models comprehensively.

* Due to memory constraints, we were limited
to using only the base and medium varia-
tions of the GPT-2 model. Larger models,
which might improve performance due to their
greater capacity, were not feasible within our
resource limits.

* The GPT model functioned as a "black box,"
making it challenging to predict or understand
how changes in prompts might affect the out-
put. This unpredictability necessitated a trial-
and-error approach to optimize prompt design
and model tuning.

7.2 Future Improvements

In response to the challenges and limitations en-
countered in our current study, we propose the fol-
lowing strategic improvements to enhance our re-
search and application:

e Optimizing Computational Resources: To
manage the high computational demand ob-
served, we propose the implementation of
more efficient data processing and model train-
ing techniques. Utilizing distributed comput-
ing and scalable cloud-based GPU resources
can help in mitigating computational con-
straints. Additionally, adopting mixed pre-
cision training could be a strategic move to de-
crease memory usage while speeding up train-
ing times, without significant performance
trade-offs.

» Exploring Larger Model Variants: Given the
constraints in exploring larger GPT-2 models
due to resource limitations, future initiatives
should focus on securing funding or form-
ing partnerships that provide access to en-
hanced computational facilities. This would
enable us to explore the potential benefits
of larger models such as GPT-2 Large and
XL. A phased scaling strategy—starting from
smaller models and incrementally moving to
larger ones—will allow for efficient resource
use and optimal model tuning.

* Enhancing Model Interpretability and Prompt
Engineering: To better understand the under-
lying mechanisms of the GPT model’s text
generation, we will integrate interpretability
tools such as feature visualization and atten-
tion mapping. This will assist in refining our
prompt engineering strategies. Furthermore,
automating the prompt generation and test-
ing process will streamline the trial-and-error
method, thus improving the overall efficiency
and effectiveness of model outputs.

* Expanding and Diversifying the Dataset: Our
dataset will be expanded to include more
diverse sources such as CoS-E and ECQA,
which contain a variety of explanation lengths
and formats. This expansion will aid in gen-
eralizing model performance across broader
datasets. Additionally, implementing data
augmentation strategies will simulate a larger
dataset, providing deeper insights into model
behaviors across diverse textual contexts.

* Implementing Incremental Learning: We
aim to incorporate incremental learning tech-
niques that allow the model to adapt to new
data continuously without losing previously
acquired knowledge. This approach is essen-
tial as we expand our dataset and integrate
evolving data types, thus maintaining a robust
learning trajectory.

* Benchmarking and Comparative Analysis:

Regular benchmarking against state-of-the-art
models will be conducted to ensure our mod-
els remain competitive and effective. Compar-
ative analysis will further allow us to under-
stand the performance variations across differ-
ent GPT model configurations and align our
strategies accordingly.
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Appendix

Labels Precision | Recall | F1

Entailment 0.92 0.92 0.92
Neutral 0.78 0.96 0.86
Contradiction | 0.96 0.73 0.83

Table 5: Test results using GPT-4 generated explana-
tions

type count | mean | std
Wrong label | 253 0.469 | 0.153
Correct label | 247 0.472 | 0.145

Table 6: Semantic similarity summary statistics

Table 7: Evaluating explanations before Post-Processing

| Version [BL |MT |R1 |RL |[BP [BR |BF | WMD |
vl (raw) | 0.005 | 0.093 | 0.065 | 0.046 | 0.803 | 0.849 | 0.825 | 1.150

v2 (raw) | 0.030 | 0.159 | 0.176 | 0.139 | 0.831 | 0.860 | 0.846 | 0.985
v3 (raw) | 0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006

Table 8: Evaluating explanations after Post-Processing

| Version |BL [MT [R1 [RL [BP [BR [BF [WMD |
vl (spelling) | 0.005 | 0.100 | 0.065 | 0.046 | 0.797 | 0.845 | 0.820 | 1.150
vl (redundant) | 0.005 | 0.096 | 0.067 | 0.046 | 0.802 | 0.846 | 0.823 | 1.149
v2 (spelling) | 0.031 | 0.161 | 0.177 | 0.140 | 0.827 | 0.859 | 0.843 | 0.987
v2 (redundant) | 0.030 | 0.159 | 0.176 | 0.139 | 0.831 | 0.860 | 0.846 | 0.985
v3 (spelling) | 0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006
v3 (redundant) | 0.024 | 0.162 | 0.151 | 0.114 | 0.826 | 0.859 | 0.842 | 1.006

Table 9: Classifier Performance for Generated Explana-
tions - before and after Post-Processing

] Version \ Weighted F1 | Micro F1 | Macro F1 | Accuracy
vl (raw) 0.380 0.341 0.308 0.34
v1 (spelling) 0.411 0.339 0.272 0.34
vl (redundant) | 0.383 0.343 0.307 0.34
v2 (raw) 0.494 0.492 0.491 0.49
v2 (spelling) 0.483 0.478 0.474 0.48
v2 (redundant) | 0.495 0.494 0.493 0.49
v3 (raw) 0.519 0.494 0.466 0.49
v3 (spelling) 0.511 0.512 0.512 0.51
v3 (redundant) | 0.521 0.494 0.463 0.49
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Table 10: Sample Explanations Generated by v2

Premise

Hypothesis

Machine Expla-
nation

GPT-4 Explana-
tion

Human Explana-
tion

A couple walk
hand in hand
down a street

A couple is walk-
ing together

The answer is
that the two are
walking hand-in-
hand (1) The two
walk hands in the
same  direction.
(2) They are
both walking
hands- in opposite
directions. The
fact that they
are standing in a
straight line is not
a coincidence. It
is a fact

Walking together
as a couple in-
herently includes
walking hand
in hand if it is
specified they are
doing so; thus, if
it’s stated they are
walking together,
the scenario of
them walking
hand in hand fits
naturally within
that broader
description.

If a couple is walk-
ing hand in hand
it is implied that
they are walking
together.

A person dressed
in a dress with
flowers and a
stuffed bee at-
tached to it is
pushing a baby
stroller down the
street

A person outside
pushing a stroller

The answer is that
the person push-
ing the strollers is
not a child (em-
phasis added)

Pushing a stroller
outside aligns di-
rectly with the
more detailed sce-
nario of a person
in a specific out-
fit pushing a baby
stroller. The ad-
ditional details of
the dress and bee
do not affect the
truth of the basic
action of pushing
the stroller.

Pushing a stroller
down the street
implies that the
person is outside

Several women
are playing vol-
leyball

They women are
hitting a ball with
their arms

The answer is
that the women
who are doing
the hitting are
not playing the
ball. They are just
playing with the
arms (The women
in the video are
actually playing a
volleyball.),:"The
video shows that
women have a
tendency to hit
the balls with a lot

Playing volleyball
involves hitting
a ball with their
arms, which is a
central action in
volleyball. There-
fore, women
hitting a ball with
their arms directly
supports that
they are playing
volleyball.

pushing the
stroller.

For women to
play  volleyball,
they must hit the
ball with their
arms.
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Premise

Hypothesis

Machine Expla-
nation

GPT-4 Explana-
tion

Human Explana-
tion

A person in a red
shirt is mowing

A person in red is
swimming in the

The answer is that
the person who

Mowing the grass
with a mower

One can’t be mow-
ing the grass and

the grass with | olympics is in an orange | and swimming in | swimming at the
a green riding shirt and is not in | the Olympics are | same time.
mower any other color is | activities that are
a mow the lawn | entirely distinct
with the green | and mutually
MOWETS. (See | exclusive based
also: "Why is it | on both the nature
that a man in blue | of the activities
is wearing and their settings.
If a person is
swimming in the
Olympics, they
cannot simultane-
ously be mowing
the lawn, and vice
versa.
The girls walk | Girls were going | The answer is that | Walking down the | Girls walking

down the street

to the park

the answer to that
question is not
clear (1) The girls
are walking down
a street. The
park is a public
place. It is the
place where the
children are going.
If the kids walk
up the sidewalk,
they are not going
down. They are
just

street does not
necessarily mean
the girls are going
to the park; they
could be headed
anywhere, and
without specific
information link-
ing their walk
to a destination
like the park,
the relationship
between these two
scenarios remains
speculative.

down the street
are not always
moving to park.
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