
Variational Autoencoders
Artificial Neural Network Architecture

Gupta Ananya Vikas (A0226576W) - Data Science and Analytics
Bharath Shankar (A0219924X) - Data Science and Analytics

Abstract
Variational autoencoders provides a base to describe an observation in latent
space. In this project, we provide an introduction to variational autoencoders
and the logic behind their framework using the mathematical concepts involved
in defining them. The basic architecture of an autoencoder and the applica-
tion of Principle Component Analysis for proving that maximising variance,
minimises error, followed by the development into variational autoencoders and
their latent space visualisation via a coding component.

Motivation and Context
We can consider the following problem: Suppose there exists a process f that
operates on a vector parameter z ∈ Rd, generating an output x ∈ Rn. (We
assume that d < n). We refer to z as being a latent vector.

We now observe x, and we want to figure out a mapping from the n dimen-
sional space to the d dimensional space, to get an estimate of the underlying
parameters ẑ.

Why do we want to find z?
The latent space of a distribution can be thought of as, a space of vectors z where
if x1 and x2 correspond to similar observations, the corresponding vectors z1 and
z2 are close to each other in that space. Ideally, we would like each dimension of
the latent space to correspond to an easily-understood parameter to a human,
but that may not be a possibility when dealing with data such as text and
images.

Nonetheless, reducing the dimensions of x has its utility, particularly in
the context of downstream tasks, such as classification and regression. High
dimensional spaces cause issues for models that depend on distance metrics for
their outputs, such as K-Nearest Neighbours, Linear and Logistic Regression.
This problem is known as the curse of dimensionality.

1

mailto:ananya@u.nus.edu
mailto:bharath@nus.edu

Reducing the number of dimensions fed to any downstream models lets us
use the fact that the dimensions in the latent space are meaningful, as well as
avoiding problems with using distance in high-dimensional spaces, improving
the performance of downstream models.

Generative modelling
A subdomain of machine learning is generative modeling, which aims to solve the
more general problem of learning the distribution over variables and simulates
behaviour of data generation in the real world.

We looked at different real-life examples of such modelling, like

• Meteorologists model the weather using partial differential equations show-
case the physics of the weather

• Astronomer models the formation of galaxies using physical laws for the
celestial and stellar bodies.

Hence, we were determined to dig deeper into this concept for the project
to understand the concepts taught better through this example widely used by
various industries.

Index
1. Traditional Dimensionality Reduction

2. Review of Autoencoders

3. Review of VAEs

4. Statistical Concepts

5. Representation Learning Approach

6. Real-Life Application of VAE

7. Coding component

Principal Component Analysis
Dimensionality Reduction is the process of transforming high dimensional space
into low-dimensional space, retaining the important original patterns. It works
by reducing the number of features that describe the data.

The main purpose of a dimensionality reduction method is to find the best
encoder/decoder from the possible encoders and decoders, that retains maxi-
mum information when encoding, hence resulting in minimum reconstruction
error while decoding.

2

A main linear method of dimensionality reduction is Principal Component
Analysis (PCA). To give a quick explanation of PCA, it involves trying to find
components that cover most of the variance in the input data. In other words,
PCA tries to find the best linear subspace of the initial space such that the error
of approximating the data by their projections, is minimised.

How PCA works to reduce dimensionality:

1. Firstly, it standardises the initial variables X̂ = X − X̄

2. Then, the covariance matrix is calculated using the covariance between all
possible combination pairs of input variables which is S= 1

N X̂T X̂

3. From the covariance matrix, the eigen vectors and eigen values are calcu-
lated which attribute into the calculation of the principal components of
the data. The principal components can be understood as linear combi-
nations of the initial variables so the new variables are uncorrelated.

4. Following this framework, maximum information from initial variables is
tried to be fitted in the first component, then the maximum of the remain-
ing information in the second component and so on.

5. As such, the first principle component will represent the largest possible
variance from the dataset. The second principal component similarly cal-
culated will represent the next highest variance when it is perpendicular
to or not correlated to the first principal component. This is repeated till
p principal components have been calculated for p variables.

3

As seen above in the graph, the 10-dimensional data produces 10 principle
components and the maximum percentage of information that is explained
variances is fitted in the first component. After which, the information in
each component keeps reducing.

6. When information is organised like seen above in principal components, it
allows dimensionality reduction without the loss of important information,
while discarding the components with low information.

7. Just like how the eigenvectors helped us find the principal components,
it also helps choose the components with useful information (high eigen-
value) from the ones with less important information (low eigenvalue).
The vectors that represent important information forms a matrix of vec-
tors that we call ’Feature vector’.

The reason for doing so is that only p components out of n selected so
mapping this will give us p dimensions in final output.

8. Finally, the data is reoriented to the axes represented by the principal
components using the feature vector as seen in the equation below:

OutputDataset = (Featurevector)T ∗ (Standardisedinputdataset)T

The objective of the process above is maximising the variance in order to
minimise the reconstruction loss.

Maximising Variance:
The goal is to maximise the variance of the projected data so we look for the
orthogonal projection of the data into a lower dimensional linear space.
Lets see for dimensions=1: ∥w1∥ = 1

σ2(x̂) = 1
N

∑N
n=1(x̂n − ˆ̄x)2 = 1

N

∑N
n=1(w

T
1 xn − wT

1 x̄)
2 = wT

1 Sw1

where S is the covariance matrix

Taking Lagrange multiplier to ensure the unit norm of w for the maximum
variance optimisation problem

J(w1) = wT
1 Sw1 + λ1 (1− wT

1 w1)

The derivative set to zero shows that Sw1 = λ1w1

Hence, on substitution, the maximum variance in lower dimensional space
is equal to the eigen value wT

1 Sw1 = λ1

Overall, for lower dimensional space with d dimensions, the principal com-
ponents are the eigenvectors corresponding to the largest eigenvalues as seen

4

above for d = 1

Minimising Reconstruction Error:
The goal is to minimise the mean squared error between the data points and
their linear projection.

J(x, x̃) = 1
N

∑N
n=1(∥xn − x̃n∥)2

where the reconstruction from the the lower dimensional latent variable is x̃

Based on properties of orthonormal basis wT
i wj , the completeness of the

basis so any linear combination of basis vectors can be used.

x̃n =
∑d

i=1(x
T
nwi)wi +

∑D
i=d+1 biwi

Computing xn − x̃n =
∑D

i=d+1(x
T
nwi)wi − biwi

On substitution in J and its derivative set to zero, J(w) =
∑D

i=d+1 w
T
i Swi

To overcome the trivial solution at w=0, we normalise to (∥w∥)2 = 1

The Minimum Error for reconstruction J works by choosing the eigenvectors
wi from the covariance matrix when Swi = λiwi

so minimum reconstruction error J =
∑D

i=d+1 λi

This can be reflected in the maximising problem above for variance too so
proves that minimising error maximises variance.

5

Autoencoders

A brief aside into Neural Nets
When discussing Kernels, we discussed the idea of feature extraction. In other
words, we use the features ϕ(x) rather than the input features x. Then, a
downstream model can then be of the form

f(x; θ) = Wϕ(x) + b

The above model is linear in in the features θ = (W,b). However, the
transformation x → ϕ(x) itself may be nonlinear. As observed in the lecture,
identifying the optimal transformation may be difficult in many cases. However,
we can try to parameterise the transformation, and then try to learn the new
features from the data. Let the new learnable parameter be θ2. Then, we have:

f(x; θ) = Wϕ(x; θ2) + b

Effectively, we have composed 2 functions together. We can then extend this
to compose even more functions together. The strength of neural nets lies in
this composition of functions.

The Universal Approximation Theorem tells us that irrespective of what the
function is, or the number of inputs and outputs, it will approximate and give
a reasonable result.
While encoding data, it is an important property to achieve universality for
optimal results however, given certain constraints it can be difficult to achieve
universality.
Considering weak learners act as building blocks and if we stack many such
building blocks and add all of them up, it helps you approximate any function
’g’ can be written as a composite combination of the individual functions.
For any neural network architecture, finding any mathematical function y =
f(x) that can map attributes(x) to output(y), this results in allowing us to
approximate any complex true relationship between input and output.

Architecture of an Autoencoder
An Autoencoder consists of 2 sub-networks - an Encoder and Decoder network.
The Encoder approximates the transformation f : Rn → Rd. The d-dimensional
co-domain of the function f is the latent space of the data.

The decoder is, at its core, a reversed version of the encoder. It approximates
the transformation g : Rd → Rn. The decoder maps from the latent space to
the reconstruction of our original input x.

Usually, d ≪ n. This leads to an under-complete representation of the data,
forcing generalisation. It is possible to take d ≫ n, but that case requires some

6

form of regularisation to prevent overfitting.

Training an Autoencoder
Autoencoders are a form of unsupervised learning. This means that the labels of
the data are not utilized for the training of the network. Like most other neural
network architectures, autoencoders try to optimize an objective function. The
usual objective function for autoencoder is:

min
θ

∥x̂ − x∥2

Where θ represents all the parameters of the neural network, x is the input
into the neural net, and represents the reconstructed x. This loss function,
however, looks familiar. It is, in fact, the same objective we saw earlier in PCA
- minimizing the reconstruction loss!

Linear Autoencoders as PCA
Consider the case of a linear autoencoder, i.e. a one-layer encoder and a one-
layer decoder, with no activation function (it needn’t be one-layer, but no ac-
tivation function is what makes it linear. We take only 1 layer for the sake of
simplicity). Additionally, we consider the case with no bias. We then can repre-
sent out autoencoder by x̂ = g(f(x)), where f(x) = Wx and g(z) = Vz, where
W ∈ Rd×n, and V ∈ Rn×d. The autoencoder objective can then be represented
as:

min
W,V

∥VWx − x∥2

Which is then equivalent to the aforementioned objective for PCA. We can
then see that adding nonlinearities via adding activation functions can be viewed
as a non-linear extension to PCA.

Latent Space Visualization - Autoencoder
Since similar points should lie closer to each other in the latent space, and dis-
similar points lie far away from each other, we should see natural clustering

7

emerge. Below, we show the latent space obtained by passing the MNIST test
dataset to an autoencoder trained on the MNIST train dataset.

Oddly, we do not see an efficient utilisation of the latent space! We see that
the points are all clustered along 2 axes, with most of the "weight" being on
one axis or the other. This can limit the capacity of the model to interpolate,
leading to the decoder having a very poor capacity for generating valid samples
from the latent space.

We can see this effect in the generated interpolations from the latent space
of the autoencoder, most of which are of poor quality.

To improve the quality of our latent space, for more efficient utilization
and better quality generation outcomes, we need to make a modification to the
autoencoder. This comes in the form of Variational Autoencoders .

Variational Autoencoders
In conventional bottleneck autoencoders, we were stymied in generation by the
fact that randomly sampling from a point in the latent space completely changed
the type of reconstruction we received. In other words, we could not guarantee
that for a point z ∈ Rd, and decoder g : Rd → Rn, where g(z) = x̂, a point
z’ = z + ϵ (where ϵ ∈ Rd is a small perturbation) does not generate a value
x̂’ = g(z’) close to x̂ (A property called continuity). To put it simply, a random
point close to an encoded point need not encode useful information.

This comes from the design of the bottleneck autoencoder. The normal
autoencoder transforms the data input to another vector in the latent space.

8

This does not encourage 2 properties we want from our latent space: continu-
ity, as well as completeness (Every point in the latent space corresponds to a
meaningful reconstruction).

How do we encourage continuity and completeness?
Effectively, we need some way to teach our network that close points in the latent
space should look similar once decoded, to ensure continuity. Also, we want to
ensure that the model learns to spread out its encoded outputs throughout the
latent space, to ensure completeness.

We do this by no longer mapping each input to a vector. We now attempt
to map the inputs to a probability distribution in the latent space. In other
words, we now consider each attribute of our latent space as being a probability
distribution that we sample from for generation.

Statistical Motivation
Let us consider the following process: Suppose there exists a process that oper-
ates on a random variable Z, that generates an outcome x. We can only observe
the realizations x of the process, and we wish to infer the properties of Z. To
this end, we would want to compute p(z|x).

By Bayes’ Theorem, we have:

p(z|x) = p(x|z)p(z)
p(x)

However, the main problem arises in the term in the denominator, p(x). By
the law of total probability, we can see that:

p(x) =

∫
p(x|z)p(z)dz

However, the above integral is intractable (i.e., there is no closed-form solu-
tion). This leads to us needing to find another way to calculate the probability
p(z|x).

Let us try to approximate p(z|x) by another distribution q(z|x). We consider
a form for q(z|x) such that the integral becomes tractable. However, how do we
figure out the best values for the parameters of q(z|x)?

The above is a common tactic in variational inference, which utilizes opti-
mization to figure out the best parameters for q(z|x). While euclidean distance
is used in the case of vectors, how do we quantify the difference between 2
distributions?

For this purpose, we use the Kullback-Liebler Divergence (KL Divergence).
The KL divergence between 2 distributions can be seen as a measure of how
different the 2 distributions are. We can then see that our optimization objective
can be represented as:

minKL(q(z|x)||p(z|x))

9

Deriving the VAE objective
We can express the KL divergence as:

KL(q(z|x)||p(z|x)) = −
∑

q(z|x)log(p(z|x)
q(z|x)

)

Recall that:

p(z|x) = p(x|z)p(z)
p(x)

Therefore:

−
∑

q(z|x)log(p(z|x)
q(z|x)

) = −
∑

q(z|x)log(p(x, z)

p(x)q(z|x)
)

= −
∑

q(z|x)(log(p(x, z)
q(z|x)

) + log(
1

p(x)
))

= −
∑

q(z|x)(log(p(x, z)
q(z|x)

)− log(p(x)))

= −
∑

q(z|x)log(p(x, z)
q(z|x)

) +
∑

q(z|x)log(p(x))

Observe that we try to sum over all values of z, since x is fixed. Thus, we
can see that the second summation term is a constant! Thus, minimizing the
KL divergence can be seen as minimizing the following term:

= −
∑

q(z|x)log(p(x, z)
q(z|x)

)

The negative of this term is referred to as the variational lower bound.

= −
∑

q(z|x)log(p(z|x)p(z)
q(z|x)

)

= −
∑

q(z|x)(log(p(x|z)) + log(
p(z)

q(z|x)
))

= −
∑

q(z|x)log(p(x|z))−
∑

q(z|x)log(p(z)

q(z|x)
)

We now see that our second term is the KL divergence between q(z|x)
and p(z)! The second term can be expressed as the negative of expectation
of log(p(x|z)) with respect to q(z|x).

If we assume a Gaussian q(z|x), we can then show that the first term reduces
down to: ∥x̂ − x∥2, which is reconstruction error! In other words, we can re-
express our objective as minimizing the sum of the reconstruction error and KL
divergence!

The KL-divergence in this case acts as a regularization term for the varia-
tional autoencoder.

10

Trade-off between KL divergence and Reconstruction error
VAEs encode their inputs as a distribution rather than as vectors and the dis-
tributions of the VAE are regularized. With this regularisation term, the model
does not encode data far apart in the latent space. This increases the amount
of overlap within the latent space. However, this regularisation term results in
a higher reconstruction error on the training data. So, the two have contrasting
effects: The reconstruction loss is minimised to improve the quality of the re-
construction,but the shape of the latent space is neglected. The KL-divergence
normalizes the latent space, but results in some additional “overlapping” be-
tween latent variables. Hence, the trade-off between the reconstruction error
and the KL divergence needs to be adjusted.

Minimizing the KL distance between q(z|x) and the prior distribution p(z).

1. Log-likelihood: Ez Q(z|x)log(p(x|z))

2. KL Divergence: KL((q|z)||p(z))

log(p(x))−KL(q(z|x)||p(z|x)) = Ez Q(z|x)log(p(x|z))−KL((q|z)||p(z))

We can observe the trade-off between the two terms — maximisation of the
expected log-likelihood and minimisation of the KL divergence.

Components of VAE

• An image is fed as input x

• The probabilistic encoder compresses the input ’x’ based on the distribu-
tion using the mean and standard deviation as a sampled latent vector

• The probabilistic decoder then reconstructs and expands the compressed
version of the input based on the probability

11

• The output x’ is the reconstructed image of the input

• Further comparisons are made between the input and output image and
the loss function is represented by the reconstruction loss and the regu-
larizer term.

As a summary, a variational autoencoder works similar to an autoencoder
but with refined features and better representation and reconstruction of the
input.

Real-life Applications of VAEs
1. Image Re-synthesis:

On optimising a VAE, a generative model can be designed over images,
which can synthesize images and change features in them like colors, shape,
etc can be modified and re-synthesized.

2. Compound Generation:
VAEs ca be used in different forms of drug discovery and the most common
one is to generate new chemical/molecule structures using the patterns and

Experiments
We attempted to visualize the latent space of the VAE, while weighting the KL
Diveregence. We show below the results of training a network at 3 values of
weight for the KL divergence term.

KL Weight = 8e-4
In this case we see that the weight on the KL term is far too high. We can
observe that the latent space is over-regularised, with only a few allowed points
spread across the space.

The quality of the generation is also not too good:

12

KL Weight = 5e-5
In this case we see that the weight on the KL term seems appropriate. The
points are well spread out, with efficient utilisation of the latent space.

The quality of the generation is also better:

KL Weight = 1e-8
In this case we see that the weight on the KL term is far too low. The VAE
now resembles an autoencoder.

The quality of the generation is not great, either:

Appendix

Reflection
Overall, this project has drawn us towards to the practical and theoretical as-
pect of Variational Autoencoders. It further helped us question every step of
our approach in terms of the proof and reasoning behind every assumption and
claim made. Within our group, each of us was involved in reading and research-
ing deeply about the topic of auto-encoders and the mathematical motivation
behind variational autoencoders. We spent time discussing the applications of

13

VAEs and how each component is developed with a mathematical purpose for
generative modelling, which drew us towards deep self-learning over the process.

Contributions
Bharath Shankar: Code + Motivation and Context + Autoencoders (Except
UAT) + VAE (Except Tradeoff and Components)
Ananya Gupta: Abstract + PCA + UAT + Preliminary Statistics + Tradeoff
+ Components of VAE + Reflection

Coding Component
Python Code using Pytorch

References

1. Jordan, J. (2018, July 16). Variational autoencoders. Jeremy Jordan.
https://www.jeremyjordan.me/variational-autoencoders/

2. Huang, Y. (2022). Exploring Factor Structures Using Variational Autoen-
coder in Personality Research. Frontiers.

3. Hinton, G. E., Salakhutdinov, R. R. (2016, April 26). Reducing the
Dimensionality of Data with Neural Networks. Www.Sciencemag.Org.

4. Smith, L. I. (2002). A tutorial on Principal Components Analysis. Ele-
mentary Linear Algebra 5e. http://axon.cs.byu.edu/Dan/478/Reading/PCA.pdf

5. Pictures from: https://towardsdatascience.com/understanding-variational-
autoencoders-vaes-f70510919f73

6. Python Code written using: https://www.pytorchlightning.ai/

14

https://github.com/Ananya8576/VAE/blob/main/VAE_PythonCode.ipynb

