
 1

Cover sheet

NATIONAL UNIVERSITY OF SINGAPORE

DSA3101: Data Science in Practice

Assignment: Project Technical Report

Name: Gupta Ananya Vikas

Matriculation No.: A0226576W

Major(s): Data Science and Analytics with Second Major in Innovation and Design

programme

Contents: (12 pages from Pg. 2 to 13 – to exclude cover and appendix page)

1. Overview of the problem

2. Model Approach: Agent-Based Modelling using Mesa

3. Model Background, Rules & Implementation: Description of rationale and code

4. Agent Behaviours and Model Results

5. Impact of the solution & Value added for Construcshare

6. Limitations & Future Considerations

7. Appendix: References

 2

Overview

This project is in collaboration with Construcshare, which provides a dealing platform for construction

industry. Dr.Murugesan, the Chief Data Officer of Construcshare, shared his vision to spread 'Greater

business connectivity and rewards', setting in motion the mission of Construcshare to connect users via

the platform for optimising businesses and building sustainable solutions.

Through this project, Construcshare was looking for an ‘indication’ of how the volume of transactions

will grow, which features to prioritise. Therefore, our motivation was to apply agent-based simulation

models as a basis in evaluation and improvement of existing e-commerce strategies to further obtain

data that can be used in business decision analysis for Construcshare’s progress. Following our

motivation and their expectations, after several interactions with the website and the Construcshare

team, our team felt that the website rolls out several features supported by small volume of data

currently. Hence, there is a need to fill the gap and provide a medium which can show the effect of

changes in different features and collect data based for different users as they interact with the website.

Based on the above, we built our problem statement to be ‘Understanding how each of the
Construcshare website features affect site-engagement in terms of user interactions’, which will guide

us in simulating the right

Simulation Model: Agent Based Model (ABM)

The insights from Bokor et al.'s paper helped narrow

the approach further to Agent-based modelling as it

weighed different simulations for construction

specifically like discrete-event simulation (DES),

agent-based modelling (ABM), and system dynamics

(SD) under different scenarios. ABM was described

much advantageous as there is no set global system

behaviour hence the system’s behaviour is influenced

by individual agents’ interaction and with their defined

environment rules(Bokor et al., 2019). Such a case

relates quite well with the environment of any e-

commerce business, which made the replication of

Construcshare’s environment via simulation easier and

more adapted to their framework.

Since, the focus of the project is on the interaction and behaviour rather than the process, an agent-

based model was adopted to construct the simulation, giving a bird’s eye view into the effect of different

actions on each aspect of the system as well as the system as a whole. While analysing the website

features, our team observed that modelling the relationship between a specific feature on Construcshare

and the users, requires the right understanding of the behaviour of the agents within the limited

resources. Hence, ABM acts as a cost-effective medium to model the challenges of the online market

for optimising the profit and minimising any financial risk(Farooq et al., 2021).

One of the important aspects of ABM which is useful in e-commerce setting is that it provides flexibility

in understanding how the system behaves over time even when it doesn’t reach a steady or stable state,

which is described as "transient and non-equilibrium" behaviour in technical terms(Kazil et al., 2020).

E-commerce being an extremely uncertain market, consumer needs are changing constantly as external

factors affect their buying and selling behaviour. There is a need to track interactions of sellers and

buyers as well as monitor their social behaviours involving spatial or network attributes, which is

difficult to map using mathematical equations or any simple machine learning models so ABM captures

the path with the solution, simplifying the complex dynamics of the system for the users(Masad &

Kazil, 2015). Therefore, ABM facilitates realistic simulation of these behaviours to see quantitatively

how they evolve over time and how different factors can have an effect on the agents, that is the users

in an e-commerce setting.

Fig 1: Example of Agent-Based Model

 3

Medium of Model: Mesa Python

Mesa is an open-source and python-based framework, which

provides a fast and versatile framework for building agent

based models. One of the main reasons to choose Mesa was

that it was python based so it was easy-to-understand,

accessible and provides the flexibility to integrate the

simulation model with different data science tools like Jupyter

Notebooks, Pandas. Moreover, the architecture is independent

so replacing components is very convenient and it can be

customised for different scale of models as the e-commerce

businesses require models to be easy to scale up and scale out

whenever needed(Kazil et al., 2020). With the end-goal of

Construcshare extending on the model, it would be easier for

the team to reproduce the model implementation, which is a

major requirement of the project. Also, Mesa has an in-built

component for visualising results with multiple agents and it
better optimised for large-scale simulations which is required

to showcase the outcome of complex e-commerce

activities(Masad & Kazil, 2015). Hence, Mesa resonated more

with our project objective and suitable for future use too.

Defining variables for Model Implementation

Audience: Chief Data Officer and the development team of Construcshare

Model Purpose: Understand how the relationship between a feature on Construcshare and the users

affects members’ website engagement and interaction like clicks, user log-ins, post creation, etc.

Explaining the Rationale: After looking at different objectives, the main focus being on ‘maximising

user onboarding’, there was an observation on correlation between the consumer interactions. Since,

user interaction drives user onboarding, rather it influences the rate of user onboarding, our team

decided to delve deeper into investigating how this engagement of existing users affects the growth of

Construcshare and its members over time. This links back directly to how an increased site engagement

would achieve the objective of new users through different reasons like similar interests, word-of-mouth

or similar dealings in the past, achieving the end goal set for the scope of the project.

Simulation Background and Parameters:

An environment for Construcshare website is set, where the agents pose the role of buyer or seller

during an action on the website which relates to interacting with the website in terms of clicking on a

post, viewing posts multiple times, negotiating for an item, creating a sell or lease post, creating a buyer

request and most of all, completing a purchase, lease or sale transaction. These interactions are

monitored over the course of changing platform pricing, which is an additional cost applied to sellers

when they complete a sale or lease through the Construcshare platform.

o Dependent Variable: Website Activity and Interaction

Website activity and interaction was chosen mainly as it is a strong predictor of online buying behaviour,

displaying demand and relevance to consumers so it can give an insight into what makes consumers

choose Construcshare. Monitoring interaction can also help them acknowledge their strengths like

features that are valued by consumers and driving engagement on the website. Additionally, interaction

has a positive impact on customer experience, which influences customer retention, customer loyalty

and most of all, word-of-mouth to enhance new user onboarding. Modelling via this metric can give a

more wholistic view on their performance which can be difficult to gauge in the construction industry

for Construcshare(Urdea & Constantin, 2021).

Fig 2: Mesa Architecture

 4

o Independent Variable: Altering Platform Fee

Among different features like pricing, marketing strategies,

payment mode and others, platform fee is the one that affects the

consumer behaviour closely and directly(Fig 3). It influences the

platform user acquisition and the consumers’ decision-making

on their mode of payment and also for future transactions which

is an important consideration for maintaining customer base.

More importantly, altering platform fee is necessary as the model

can show the effect of change in its value, giving Construcshare an insight into the right platform fee

as it affects the overall competitiveness of the platform. Also, it will help them achieve sustainability

across the platform ecosystem with profitability for service providers and consumers(Inoue et al., 2019).

It can enhance the consumer experience to ensure long-term sustainability and success for

Construcshare, which is their main aim as they grow in the e-commerce market.

Model Rules & Assumptions:

Prior to diving into model assumptions, one of the clarifications about the overall focus is that only the
website interface was assessed as part of this project and not the application that Construcshare operates.

Moving to the model rules and assumptions:

1. All agents under the model are rational

2. The agents are assumed to follow the rule: Higher similarity based on initial relationship between

agents, means they are more likely to interact more

3. Each agent has limited patience during a transaction so like in negotiations, the transaction will

terminate after 4 negotiations (2 times back and forth)

4. The hypothesis for platform cost is that as platform cost changes, the probability of interaction

between agents will change

Model Classes & Methods: ConstrucshareModel, MemberAgent, Post, Item, Network Grid,

Relationship

Overview of all the classes and methods defined for the simulation model

Libraries Used: Mesa, NumPy, Math, Matplotlib, UUID, Pandas, Copy, Collections, Itertools, Numbers,

Typing, Warnings, Networkx, Random, Datetime.

Primary resource classes like ‘Post’ and ‘Item’ created to ease the process of modelling agent behaviours

later for the main model and agent classes.

Fig 3: Effect of platform fee

Fig 4: All Classes and

Methods

 5

‘Post’ class object has basic variables defined under the constructor as shown below with two additional

methods: get_datetime() for retrieving the date and time of post creation and get_post_details() to get a

list of the post particulars like id, type, item, category, etc.

Post Attributes Initial Set Value Use case

post_id *Input when a post

object is defined

Unique ID assigned to each post for identifying

post_type *Input when a post

object is defined

Kind of post like Purchase/Rent for buyer request post

and Sale/Lease for seller post

post_datetime Current date, time Assign timestamp for the date and time of post creation

post_tag None If a seller post matches buyer request, the request id is tagged here

func_tag None Next function to be called is tagged for correct execution of actions

next_role None Assigned as 1 for buyer or 2 for seller for next agent’s action

item *Input when a post

object is defined

Stores item object which pertains to this post object

item_cat *Input when a post

object is defined

Category of the item assigned to this post object

times_negotiated 0 Counter for negotiation cycle

buyer_seller None Tuple (buyer, seller) to keep track of the agents for this post object

payment_mode None Tracks direct deal or via platform dealing

delivery None Tracks method of delivery – self-collect or on-site delivery

owner None Subordinate variable to storing seller id of the post creator

original_item None Subordinate variable for storing item to avoid duplication

‘Item’ class object has 4 basic variables defined under the constructor as shown below with a category

method: set_category() which choose a random category from the 8 categories under Construcshare.

Item Attributes Initial Set Value Use case

item_id *Input when item object is defined Unique ID assigned to each item for identifying

count *Input when item object is defined Stores available number of units of this item

curr_price *Input when item object is defined Stores the price assigned for the item

category Assigned via set_category method() Stores the category that the item belongs to

Creating the environment of the simulation model, a subclass of mesa.Model is initiated as

‘ConstrucshareModel’ class which takes 4 major inputs (marked in green) while running the model

to standardise some of the dynamic aspects of the website and make it scalable for the model. Under

the constructor method, different attributes of the model shown below are initialised as well as agent

classes are initialised within a grid network(space) with added along a scheduler(time) calling the

agent behaviours in staged order of execution. The methods defined are:

o step() which calls the scheduler’s step method executing the agents' behaviours in the stages order

using ‘act’ function, mentioned in model_stages while initialising the model. Updating the state of

the simulation at each time step, looping through the nodes in the grid and using the neighbouring

nodes, average interaction intensity their interaction is updated in the network. Also, the step

method updates the interaction intensity of each agent's edges in the network by reducing them

uniformly by 20% to take into account repeated interaction intensity, which depreciates.

o run_model() performs the step function cycle for 200 iterations to manage the agent actions for

200 steps maximum so that interaction data can be collected in the data collector set up, which can

be used to drive more consumer-specific decisions for Construcshare.

Model Attributes Initial Set Value Use case

file_name *Input when model

executed

Name of file used for similarity mapping of agents:

follower_data.csv

file_path Path to data folder Stores path of file for extraction of data

 6

num_items *Input when model

executed

Stores initial number of items introduced in model

num_agents *Input when model

executed

Stores initial number of agents introduced in model

agents_dict Empty Dictionary Maps agent’s unique id as key and agent object as value

platformcost *Input when model

executed or default as 0.04

Stores proportion of amount charged to sellers when selling or

leasing via the platform – assessed through model

existing_items Empty List List of all item objects

items_not_allocat

ed

Empty List Supplementary list of items not allocated or dealt under the model

existing_listings Empty List List of current seller post listings

existing_requests Empty List List of current buyer request posts

item_counter 0 Increments with item’s count for carrying out the model steps

agent_counter num_agents Earlier set to initial number of agents – changes as more agents

added

current_id 0 Arbitrarily initialising of current model for next model to be called

grid NetworkGrid object Creates grid instance to monitor model’s space component

interaction_intens

ity

Sum of grid edge

interaction

Using grid, calculating sum of interaction over the edges and

between agent nodes in the network

schedule Time scheduler StagedActivation scheduler used for model’s time component to

execute each stage of action one after another – here implemented

using act() function of the agents, not time component entirely

running True Boolean variable to manage current state of model - running or not

datacollector DataCollector Mesa’s Data collector component to record interaction and average

interaction data as the agent actions are executed

‘Relationship’ class was created to specifically apply the follower data provided by Construcshare to

map the initial relationship between agent nodes in the network. It follows the rationale that if a user

follows another user: the edge weight is higher showing more similarity of the nodes. Initially, the

idea was to use calculated Jaccard similarity for this purpose but after feedback, a shift was made for

using their follower data as a basis for the Jaccard similarity indicator for the node relation. The

method defined is: create_relationships() which uses the input follower data frame to initialise a

dictionary mapping the follower user id to following user ids after string manipulations in the

followings dictionary created to extract the ids from the list. The relationship score is then calculated

and assigned in the relationship dictionary of the class based on the following two conditions:

o if agent 1 follows agent 2 then the score is increased by 5 arbitrarily.

o if both agent 1 and 2 follow each other, the score is updated by sum of each other’s score to

signify a stronger initial relationship hence greater similarity between the agent nodes.

Relationship

Attributes

Initial Set Value Use case

relationship Empty Dictionary Stores each user’s ID as key and their relationship score based on

the users that they are following

follower_dat *Input when

relationship is defined

Stores the data frame from reading the input followers_data_path

‘NetworkGrid’ class is like the space component of the model implemented for simulating

Construcshare as a network of agent nodes shown as a graph where each node represents an agent and

edge represents their interaction. There are three attributes defined under the constructor as seen

below which are integral in assigning nodes to their position in the grid based on the ‘NetworkX’

architecture.

Grid Attributes Initial Set Value Use case

G *Input when new network initialised NetworkX graph instance stored

 7

Some methods which have conventional and pre-defined functions are shown below which are mainly

used for either updating the grid via adding, removing, moving agents to recalibrate the interaction.

To model the complete Construcshare environment, an agent class is defined called ‘MemberAgent’

to signify that each agent represents a member of the Construcshare community as they can only start

dealing after registering on the platform. This agent class uses the pre-defined class ‘mesa.Agent’,

which is commonly used in agent based simulations with the pre-fed variables unique_id and model,

distinguishing each agent from another using the id and model defined for the setup environment,

along with other attributes explicitly defined in the constructor method as seen below.

Agent Attributes Agent Role Initial Set Value Use case

desired_items Buyer *Input when a

buyer is defined

List of items that the buyer needs or has requested for

inventory Seller *Input when a

seller is defined

List of items available for sale or lease

requests Buyer Empty List List of all buyer requests made

posts Seller Empty List List of all seller posts created

pending_actions Buyer & Seller Empty List List to monitor and keep track of pending actions for the

user so they can fulfil these before moving to next action

wtp Buyer *Input when a

buyer is defined

Dictionary using item id as key and buyer’s respective

willingness-to-pay for that particular item as a value

wts Seller *Input when

seller is defined

Dictionary using item id as key and seller’s respective

willingness-to-sell for that particular item as a value

path *Input when new network initialised Stores the edge paths of the graph

similarities Assigned to Relationship class based

on given path

Stores the Relationship class for similarities of nodes

based on their follow behaviour

Grid Method Input Purpose Description Output

add_agent() Agent

class

Adds a new node to

the graph with its

neighbours

New node with jaccard value set to 0 is added then

iterating through all the nodes in the graph, edge is

created for new node and jaccard value is changed

if other nodes have a relationship with new node

else jaccard value set randomly between 0 and 1

with interaction set to 0.

Calls

place_age

nt()

function

place_agent() Agent and
node_id

Positions a given
agent in a node

Sets agent position to the node_id and add the agent
to the agents list under node of graph instance G

None

get_neighbors node_id,

include_c

enter,

threshold

Gives all neighboring

nodes within a

threshold

Among the list of neighbours of the node_id, if

distance between them is within a threshold then

node is added to the neighbour’s list with decision

to including the centre or not

List of

neighbour

ing nodes

set_interaction

_edge

Start and

end node,

new_val

Set interaction of an

edge between two

nodes

Set the interaction value of the edge from start to

end and end to start node as the new_val given

None

move_agent Agent and

node_id

Moves agent to new

node

Calls remove and place agent for fresh initialised

placement using node_id

None

remove_agent Agent Discard the agent

from the network

Removes agent from list of agents under G and sets

the position as None

None

is_cell_empty node_id Checks the cell Checks if contents of the cell is empty or not True/False

get_cell_list_c

ontents

List of

cells

Getting the agents

from cell contents

Lists agents contained in the cells of cells_list List of the

agents

get_all_cell_c

ontents

List of

agents

Getting all agents Lists all agents in the network List of all

agents

 8

log Buyer & Seller Empty List List of all past actions taken by agent

avg_interaction Buyer & Seller 0 Integer to represent the interactions based on actions

taken by the agent

next_req Buyer & Seller None Stores request post if linked with a listed seller post

next_fulfil Buyer & Seller None Stores the post which the agent interacted with and

confirmed price for fulfilment of order

money Buyer & Seller 100 Placeholder value used under fulfilling

pos Buyer & Seller 0 Shows position of agent

interactions Buyer & Seller Empty Dictionary Dictionary to record the interactions

Method Input Purpose Description Output

make_

buyer_

req

None Creates

a new

buyer

request

post

If the desired items list is not empty, buyer chooses an item object randomly

from its desired items which does not have an existing request post.

A post object is created using title, request type (purchase, rent or both) and

unique ID assigned to the created request and the buyer_seller tuple is set to

indicate self as the buyer. This request is then added to the buyer's requests as

well as the model.existing_requests and returned.

Created

request

(Post

object)

delete_

request

Reque

st

Discard

request

Loop over the model.existing_requests and buyer’s requests to match the

required post_id and remove it from both the model and agent’s request list.

None

view_

listings

None Shows

buyer’s

browsin

g action

First, the agent checks for the presence of neighbouring node posts, randomly

selecting one for viewing. If there are no neighboring posts, it selects a post

randomly from model’s existing_listings.

Then the item associated with the selected post is checked against the buyer's

desired items and a copy of the post is created to express interest in that listed

seller post, setting the agent’s buyer_seller attribute as self and seller who

created the post.

Lastly, if the buyer's willingness-to-pay for that item is less than the item price,

need to move to negotiation so the func_tag is set to negotiate. Else, the price is

suitable so the func_tag is set to confirm_price method, and the post is added in

the pending_actions list of the buyer and returned.

Listed

post

copy

(Post

object)

create_

post

None Creates

new

seller

post

Firstly, if the next_req attributes is not None, means the post creation is

triggered by an existing request. Else, if not previously linked to buyer request,

it is a fresh post triggered by seller. The particular details of the post like item,

category, post type, payment mode, delivery method, etc are set randomly from

the options available on the website or set arbitrarily for text entries based on it

being a sale or lease post accordingly.

New post object is defined and looped over the existing requests to check if the

new post matches a request, which is added as post_tag and the agent’s

buyer_seller attribute is set based on the seller who created the post and buyer
if it matches a request else set as None. Finally, this new post is added under

existing_listings and seller’s posts list with post’s owner set as the seller id.

None

delete_

post

Seller

Post

Discard

a post

Matches the seller post id with the contents of existing listings and seller posts

and removes it from both the lists

None

view_

requests

None Shows

seller’s

browsin

g action

of buyer

requests

Seller chooses a request post randomly from the existing_requests for viewing.

Then, this selected request is checked if it has an existing seller post using

post_tag else, the item indicated in the selected request is checked if it has

enough quantity in the seller’s inventory followed by calling create_post(),

setting next_req to the selected request – used to model potential posts scenario

After this, the seller is added to the buyer's interaction dictionary and the grid,

increasing the interaction value by 2 to represent edge between the buyer and

seller as they interact over a post.

None

Moving to the methods which tie around these attributes together for carrying out each agent behaviour seen across

the platform from the perspective of buyer and seller.

 9

fulfil None Complet

es a

purchas

e, sale

or lease

transacti

on

The post sent for fulfilment of order is retrieved using the agent’s next_fulfil

attribute and then the post is deleted for both agents, item removed from their

desired items and their respective willingness to pay and sell for that item is

removed as order is being processed so post and item is no longer active.

Also, the item is updated in each agent’s inventory which allows circular

trading scenario so buyer adds the purchased item to their inventory for resale

and removed from seller’s inventory.

The interaction for this fulfilment action is increased by 5 for the seller with

regard to the edge in the grid between the seller and buyer.

Lastly, another round of checking is done to ensure post and item are removed

from all pending_actions, other agent’s existing posts to finish this transaction.

None

confirm

_price

None Implem

ents the

final

quoted

costing

for an

item

Retrieves the last added post from pending_actions and based on the next_role

attribute of this post, buyer and seller action for final price quoting is done.

If the role is buyer, the buyer will confirm the price and irrespective of the

payment mode, post will be removed from requests and func_tag will be set to

fulfil for next_role as seller to move to fulfilment.

If the role is seller, seller’s choice in payment mode is considered so simple

deduction from placeholder value in ‘money’ attribute else addition of platform

fee to the final price if via Construcshare payment gateway and func_tag set to

fulfil for next_fulfil set as the current post to move to fulfilment of order.

negotiat

e

None Conduct

negotiati

on

cycles

for two

rounds

Models the negotiation cycle of the transaction wherein the last added post

from pending_actions is selected and negotiation based on the next_role

attribute to represent which agent called the action of negotiation.

When called by buyer, there are three states available:

1. If buyer’s willingness-to-pay is greater than or equal to the item’s price

then confirm_price() is called by the buyer - Accepting the transaction

2. If 4 negotiations (2 cycles) performed then, transaction terminated with

respect to low patience level of agents – Termination of transaction

3. Else when buyer’s willingness-to-pay is lower than price and negotiation

limit has not reached 4 yet, then a round of negotiation is initiated. In a

negotiation round, the price is reduced based on a 10% difference as a

buyer offer and then the role switches to seller to approve/disapprove of

this buyer offer based on their willingness-to-sell, setting func_tag to

negotiate for initiating next round of negotiation.

When called by seller, there are three states available:

1. If seller’s willingness-to-sell is lesser than or equal to price then accepted

and confirm_price() is called by the seller

2. If 4 negotiations (2 cycles of back and forth) done and yet the price

differences are not suitable, then terminated

3. Else, seller offer is proposed using the same rules as before to set

next_role as buyer for them to approve/disapprove of the new seller offer,

assigning func_tag to negotiate for initiation of next round of negotiation

to be called.

Similar to other methods, negotiation interaction for buyer is added in the grid

of seller interactions dictionary and score increased by 5 to update the edge

between the buyer and seller performing negotiation action.

None

 10

Rough drawing for an example run applying all defined methods

Example Run: Buyer ‘b’ browses the website and wants to buy an item ‘t’

1. The act function triggers make_buyer_req() for item ‘t’ and this request is added to b’s requests.

2. A seller ‘s’ calls view_requests() and a new post for it is created using create_post().

3. This post is added as a listing so ‘b’ views the listings via view_listings().

4. Suppose b’s willingness to buy is lower than price of ‘t’, there is a trigger to negotiate() from ‘b’

5. ‘b’ suggests an offer to ‘s’, which is assessed by ‘s’ but let’s say willingness to sell for ‘s’ is higher

so buyer offer is not accepted and an offer is sent by seller ‘s’ for ‘b’ to assess with a new

negotiate() call.
6. The new offer is within the willing to pay so b accepts it within negotiate, calling confirm_price().

7. The buyer gets the final price quotation and the order moves to fulfilment via fulfil() called.

8. The post and request for item ‘t’ is discarded and other variables are updated for the respective

buyer ‘b’ and seller ‘s’.

Agent Behaviour and Interaction Methods

Agents: Member of the Construcshare website, who can be a buyer, seller or both

Agent State(s): Assessing current members and new members, there is a state of active and inactive

users wherein, initially each member is considered active. Also, the agent can be at multiple stages of

the transaction flow and the end state is usually a fulfilled transaction or a rejected transaction, which

will be explained further as agent behaviours.

act None Respons

ible for

calling

function

in order

for a

complet

e cycle

The idea of this function is to make sure all the actions are called in sequence

and it initiates the stages of actions. The current role and action_type is

randomly called to start the transaction.

1. If curr_role is buyer:

- If curr_action_type is 2 (previous action) and the model has existing

listings, the first action called is view_listings() – mainly for starting a

new transaction from scratch from buyer’s side.

- If curr_action_type is 3 (previous action) but the buyer has pending

action, the post with pending action will be extracted and the previous

action which was interrupted or left idle will be finished first, calling the

previous action method to be called – continuing transaction.

- If curr_action_type is 1 (new action) and no existing listings or pending

actions then buyer makes a request calling make_buyer_req() –

facilitating the seller to act in the transaction.

2. If curr_role is seller:

- If curr_action_type is 2 (previous action) and the model has existing
requests, the first action called is view_requests() – mainly for start

reaction from seller’s side.

- If curr_action_type is 3 (previous action) but the seller has pending

action, the post with pending action will be extracted and the previous

action which was interrupted or left idle will be finished first, calling the

previous action method to be called – continuing transaction.

- If curr_action_type is 1 (new action) and no existing requests or pending

actions then seller creates a new post calling create_post() – facilitating

the buyer to act in the transaction.

None

Fig 5: Application run of methods

 11

Agent Behaviours: Website interaction and engagement is monitored and the specific behaviours

assessed are expressing interest by viewing posts, requests, negotiation, successful transaction. The

order of actions considered for interaction are:

1. Expressing interest in post – request is viewed for interaction so value updated by 2

2. Negotiation – value updated by 5

3. Successful purchase – order fulfilled so value updated by 5

Flowchart of agent behaviour:

The methodology followed in this paper set the basis for our project

execution where they use agent based simulation to test how different

business strategies affect the behaviour of sellers, suppliers and consumers

on a B2C sales website. Their source idea for developing the interactions

between ‘ConsumerAgent’ and ‘SellerAgent’ (as seen in figure 6) gives a

detailed analysis factors influencing user behaviour by modelling the

actions taken by consumers as they interact with e-commerce platforms.

These interactions are fed into a utility function to quantitatively monitor
the effects and identify consumers with similar behaviours or needs for

targeted strategy planning(Čavoški & Marković, 2017).

Using the above idea, we modelled the actions specific to

Construcshare to quantify their interaction instead of modelling all

the social behaviours described in the figure 6. Similar to utility

function, the interaction calculations were used, where each action

has a different utility (interaction score increment) hence a different

effect on their engagement. This engagement was shown as a

network of agents which can be visually comprehensive rather than

just tabular calculations. The figure 7 shows the cycle of

completing a transaction involving buyer(orange icons) and

seller(blue icons) actions where agent has the freedom to

accept(green arrows) or reject(red arrows) or continue negotiating

to maximum two cycles (yellow arrows) during a transaction.

Flowchart of all components:

1. Model is initialised with the required 4

inputs(agents, items, platform fee, follower_data)

and run some iterations where each agent performs

an action and they interact with each other – giving

insight into which users interact more and have

more chance of bringing a new user to onboard.

2. Agents acting as Buyer or Seller and interacting

with one another to conduct a transaction leading to

fulfilment or rejection

4. Datacollector works during every transaction to

collect data based on actions like viewing requests,

negotiating and successfully completing a

transaction (captured parts shown with blue

arrows), which add to the interaction values for

plotting in the network grid.

Docker & API Component (model_api.py, Dockerfile, docker-compose.yml, requirements in ‘code’)
The API works using flask application to host the results on port 5000 using mesa container. It extracts

the network grid using network_plots() to output two graphs: one using followers data, which can be

uploaded using upload(), for initial relationship values, second using actions taken by agent for

interaction values and a table, showing the interaction and similarity values over 50 iteration steps.

Figure 4: Agent Behaviour Reference

Fig 6: Reference Implementation

Fig 7: Agent Implementation

Fig 8: Complete Working Implementation

 12

Running in docker: Firstly, set up working directory to the code folder then use ‘docker compose up -

d’ to get the container up and running. Then call ‘export FLASK_APP=model_api’ followed by ‘flask

run’ and 4 inputs required to start flask application on http://127.0.0.1:5000

Data processing (Script:code/DataCleaning.ipynb)(csv file: code/Final_code/data/follower_data.csv)

The main source of data provided were the follower, order and post logs, along with some audit logs

however, with repetitions and test entries. Using pandas and numpy, some basic manipulations and

column mappings were done then cleaned up using group by, filter, merge and irrelevant columns were

dropped to combine only the relevant ones. The pre-processed data table contained 7 unique transactions

out of which, the 11 follower user ids were filtered with their respective list of following user ids, which

is used as an input for the model. The model can use dynamic data tables to alter the relationship of

nodes based on the follower ids, making it suitable for the users to see the difference over time.

Impact of solution for User

Construcshare can use these graphs as an indicator for their future predictions and strategies to gauge

the customer behaviour so they can tailor features for each user.

Theoretical Output Network Grid Analysis

Network grid shown as the outcome because the relation between nodes is affected

by multiple factors so graph is a better medium to display them.

There are two major aspects shown in the graph below:

Similarity based on Initial Relationship: Using follower user data, if two users

followed each other then they are highly related – higher similarity while those that

don’t will be further from each other as less related – lower similarity. This

relationship is updated by value 5 so if one follows another then value added by 5

and if both follow each other (two-way) then value is twice that is 10 is added so

higher score, lesser distance between nodes so higher similarity.

Interaction between nodes: Using datacollector and actions taken by agents, the

interaction is calculated for each user so if higher interaction value, thicker edge

between the nodes while for lower interaction, thinner edge. When a user registers,

a thin edge is attached with other agents, and as they perform actions, this edge gets

thicker, which differs over time based on their activity on the platform.

Model Results

The intermediate results for

test_model set using 2

agents, 5 items, run for 5

steps, which traces the

transition from one action

to another to see how the

agents act at each timestep

when platform fee is 0.04.

The table even shows

average interactions over

the 5 steps.

The final results that can be used for insights source from the network grid graph and the table shown

below (displayed in flask application). The below graphs were generated for 8 items, 5 agents run for

50 iteration steps with platform fee set to 0.02 and the results show the agent interaction values and

relationship similarity values are marked on the edges in figures 11 and 12 respectively. In the

implementation below, the thickness and similarity distance between nodes cannot be shown visually

as seen in figure 9 above so the respective values are rounded and assigned over the edges like figure

11: Interaction values on edges and figure 12: Relationship similarity values on the edges, and their

actual calculated values can be seen for each agent and each edge in the figures 13 and 14 respectively.

Fig 9: Grid Understanding

Fig 10: Intermediate Runs Breakdown by steps

 13

These graphs can help drive insights like agents 1 and 4 having prior follow relation (10) caused most

interaction (2.73), so these are more likely to have greater activity and more chance of bringing new

users to the platform. Between agents 3 & 4 and agents 2 & 4, although both don’t have a strong follow

relationship with each other, their interaction levels differed, which means there is an external factor

like word-of-mouth or historical data connection which has caused a difference.

Value-added for Construcshare

• Regular Monitoring: the platform can monitor the impact of changing a feature on existing users'

engagement and user onboarding. Like platform fee, other features can be altered to see the effect.

• Predict & Plan: Based on simulation, the team can deploy the features that draw value without

additional spending on research and enhance the speed of decision making.

• Competitive Advantage: Being aware of the ‘cause and effect’, features more suited to consumer needs

and wants based on our low-cost and low-risk simulation model, aligning the logistics and marketing

well in time to be ahead of competitors.

Limitations

Project Limitations: The scale of data was not pre-defined; the initial datasets contained mainly test

entries and some were irrelevant for the model scope, so internal model testing with synthetic data or

arbitrability set values was done as there was no real-time data to validate the model with actual users.

Model Limitations: The graph shows the interactions between fixed number of agents and items, which

can only be changed when the model is initialised so the user onboarding for new users can only be

seen as an insight on current users but cannot be shown visually in the graph by adding new nodes.
Since, the development team at Construcshare rolled out new changes and features, we did not have

enough time to model all changes. The element of uncertainty in the project helped us explore different

aspects of the model but also brought ambiguity on the model satisfying the need of the company.

Future Considerations and Improvements

1. Once there is enough data available, the model can be changed to show updates in real-time, which

is a popular requirement by e-commerce websites. Also, additional data can help in the inclusion of

other two objectives of maximising reach and transactions.

2. Improvement in the way the graph edges change with each feature change can be enriched with

more parameters in model for a more hands-free and visual experience for users via the native app.

3. Similarity metric can be enhanced from initial follow relationship to using agent’s interest during

sign up, company domain, inventory, items purchased, etc to define similarity between nodes.

4. Integrating such graph approaches for a recommendation system for buyers and sellers like many

popular e-commerce websites so easier navigation across the website.

Fig 11: Agent Interaction Graph Fig 12: Relationship-Similarity Graph Fig 13: Agent-wise similarity and interaction

Fig 14: Edge-wise Interaction and Similarity (jaccard)

 14

Appendix: References (APA style)

1. Bokor, O., Florez, L. T., Osborne, A. G., & Gledson, B. (2019). Overview of construction

simulation approaches to model construction processes. Organization, Technology &

Management in Construction, 11(1), 1853–1861. https://doi.org/10.2478/otmcj-2018-0018

2. Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for Agent-Based Modeling: The

Mesa Framework. Lecture Notes in Computer Science, 308–317. https://doi.org/10.1007/978-

3-030-61255-9_30

3. Masad, D., & Kazil, J. (2015). Mesa: An Agent-Based Modeling Framework. Proceedings of

the Python in Science Conferences. https://doi.org/10.25080/majora-7b98e3ed-009

4. Farooq, M., Shakoor, A., & Siddique, A. (2021). Agent-based modeling and simulation in the

analysis of e-commerce market. 2021 International Conference on Frontiers of Information

Technology (FIT). https://doi.org/10.1109/fit53504.2021.00060

5. Urdea, A., & Constantin, C. P. (2021). Exploring the impact of customer experience on

customer loyalty in e-commerce. Proceedings of the . . . International Conference on Business

Excellence, 15(1), 672–682. https://doi.org/10.2478/picbe-2021-0063

6. Inoue, Y., Takenaka, T., & Kurumatani, K. (2019). Sustainability of Service Intermediary

Platform Ecosystems: Analysis and Simulation of Japanese Hotel Booking Platform-Based

Markets. Sustainability, 11(17), 4563. https://doi.org/10.3390/su11174563

7. Čavoški, S., & Marković, A. S. (2017). Agent-based modelling and simulation in the analysis

of customer behaviour on B2C e-commerce sites. Journal of Simulation, 11(4), 335–345.

https://doi.org/10.1057/s41273-016-0034-9

8. Code References: https://github.com/projectmesa

https://doi.org/10.2478/otmcj-2018-0018
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.25080/majora-7b98e3ed-009
https://doi.org/10.1109/fit53504.2021.00060
https://doi.org/10.2478/picbe-2021-0063
https://doi.org/10.3390/su11174563
https://doi.org/10.1057/s41273-016-0034-9
https://github.com/projectmesa

