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Overview 

This project is in collaboration with Construcshare, which provides a dealing platform for construction 

industry. Dr.Murugesan, the Chief Data Officer of Construcshare, shared his vision to spread 'Greater 

business connectivity and rewards', setting in motion the mission of Construcshare to connect users via 

the platform for optimising businesses and building sustainable solutions.  

 

Through this project, Construcshare was looking for an ‘indication’ of how the volume of transactions 

will grow, which features to prioritise. Therefore, our motivation was to apply agent-based simulation 

models as a basis in evaluation and improvement of existing e-commerce strategies to further obtain 

data that can be used in business decision analysis for Construcshare’s progress. Following our 

motivation and their expectations, after several interactions with the website and the Construcshare 

team, our team felt that the website rolls out several features supported by small volume of data 

currently. Hence, there is a need to fill the gap and provide a medium which can show the effect of 

changes in different features and collect data based for different users as they interact with the website.  

 

Based on the above, we built our problem statement to be ‘Understanding how each of the 
Construcshare website features affect site-engagement in terms of user interactions’, which will guide 

us in simulating the right 

 

Simulation Model: Agent Based Model (ABM) 

The insights from Bokor et al.'s paper helped narrow 

the approach further to Agent-based modelling as it 

weighed different simulations for construction 

specifically like discrete-event simulation (DES), 

agent-based modelling (ABM), and system dynamics 

(SD) under different scenarios. ABM was described 

much advantageous as there is no set global system 

behaviour hence the system’s behaviour is influenced 

by individual agents’ interaction and with their defined 

environment rules(Bokor et al., 2019). Such a case 

relates quite well with the environment of any e-

commerce business, which made the replication of 

Construcshare’s environment via simulation easier and 

more adapted to their framework. 

 

 

Since, the focus of the project is on the interaction and behaviour rather than the process, an agent-

based model was adopted to construct the simulation, giving a bird’s eye view into the effect of different 

actions on each aspect of the system as well as the system as a whole. While analysing the website 

features, our team observed that modelling the relationship between a specific feature on Construcshare 

and the users, requires the right understanding of the behaviour of the agents within the limited 

resources. Hence, ABM acts as a cost-effective medium to model the challenges of the online market 

for optimising the profit and minimising any financial risk(Farooq et al., 2021).  

 

One of the important aspects of ABM which is useful in e-commerce setting is that it provides flexibility 

in understanding how the system behaves over time even when it doesn’t reach a steady or stable state, 

which is described as "transient and non-equilibrium" behaviour in technical terms(Kazil et al., 2020). 

E-commerce being an extremely uncertain market, consumer needs are changing constantly as external 

factors affect their buying and selling behaviour. There is a need to track interactions of sellers and 

buyers as well as monitor their social behaviours involving spatial or network attributes, which is 

difficult to map using mathematical equations or any simple machine learning models so ABM captures 

the path with the solution, simplifying the complex dynamics of the system for the users(Masad & 

Kazil, 2015). Therefore, ABM facilitates realistic simulation of these behaviours to see quantitatively 

how they evolve over time and how different factors can have an effect on the agents, that is the users 

in an e-commerce setting. 

Fig 1: Example of Agent-Based Model 
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Medium of Model: Mesa Python 

Mesa is an open-source and python-based framework, which 

provides a fast and versatile framework for building agent 

based models. One of the main reasons to choose Mesa was 

that it was python based so it was easy-to-understand, 

accessible and provides the flexibility to integrate the 

simulation model with different data science tools like Jupyter 

Notebooks, Pandas. Moreover, the architecture is independent 

so replacing components is very convenient and it can be 

customised for different scale of models as the e-commerce 

businesses require models to be easy to scale up and scale out 

whenever needed(Kazil et al., 2020). With the end-goal of 

Construcshare extending on the model, it would be easier for 

the team to reproduce the model implementation, which is a 

major requirement of the project. Also, Mesa has an in-built 

component for visualising results with multiple agents and it 
better optimised for large-scale simulations which is required 

to showcase the outcome of complex e-commerce 

activities(Masad & Kazil, 2015). Hence, Mesa resonated more 

with our project objective and suitable for future use too. 

 

Defining variables for Model Implementation 

 

Audience: Chief Data Officer and the development team of Construcshare 

 

Model Purpose: Understand how the relationship between a feature on Construcshare and the users 

affects members’ website engagement and interaction like clicks, user log-ins, post creation, etc. 

 

Explaining the Rationale: After looking at different objectives, the main focus being on ‘maximising 

user onboarding’, there was an observation on correlation between the consumer interactions. Since, 

user interaction drives user onboarding, rather it influences the rate of user onboarding, our team 

decided to delve deeper into investigating how this engagement of existing users affects the growth of 

Construcshare and its members over time. This links back directly to how an increased site engagement 

would achieve the objective of new users through different reasons like similar interests, word-of-mouth 

or similar dealings in the past, achieving the end goal set for the scope of the project.  

 

Simulation Background and Parameters:  

An environment for Construcshare website is set, where the agents pose the role of buyer or seller 

during an action on the website which relates to interacting with the website in terms of clicking on a 

post, viewing posts multiple times, negotiating for an item, creating a sell or lease post, creating a buyer 

request and most of all, completing a purchase, lease or sale transaction. These interactions are 

monitored over the course of changing platform pricing, which is an additional cost applied to sellers 

when they complete a sale or lease through the Construcshare platform. 

 

o Dependent Variable: Website Activity and Interaction 

Website activity and interaction was chosen mainly as it is a strong predictor of online buying behaviour, 

displaying demand and relevance to consumers so it can give an insight into what makes consumers 

choose Construcshare. Monitoring interaction can also help them acknowledge their strengths like 

features that are valued by consumers and driving engagement on the website. Additionally, interaction 

has a positive impact on customer experience, which influences customer retention, customer loyalty 

and most of all, word-of-mouth to enhance new user onboarding. Modelling via this metric can give a 

more wholistic view on their performance which can be difficult to gauge in the construction industry 

for Construcshare(Urdea & Constantin, 2021).  

 

 

Fig 2: Mesa Architecture 
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o Independent Variable: Altering Platform Fee 

Among different features like pricing, marketing strategies, 

payment mode and others, platform fee is the one that affects the 

consumer behaviour closely and directly(Fig 3). It influences the 

platform user acquisition and the consumers’ decision-making 

on their mode of payment and also for future transactions which 

is an important consideration for maintaining customer base. 

More importantly, altering platform fee is necessary as the model 

can show the effect of change in its value, giving Construcshare an insight into the right platform fee 

as it affects the overall competitiveness of the platform. Also, it will help them achieve sustainability 

across the platform ecosystem with profitability for service providers and consumers(Inoue et al., 2019). 

It can enhance the consumer experience to ensure long-term sustainability and success for 

Construcshare, which is their main aim as they grow in the e-commerce market. 

 

Model Rules & Assumptions: 

Prior to diving into model assumptions, one of the clarifications about the overall focus is that only the 
website interface was assessed as part of this project and not the application that Construcshare operates.  

Moving to the model rules and assumptions: 

1. All agents under the model are rational 

2. The agents are assumed to follow the rule: Higher similarity based on initial relationship between 

agents, means they are more likely to interact more 

3. Each agent has limited patience during a transaction so like in negotiations, the transaction will 

terminate after 4 negotiations (2 times back and forth) 

4. The hypothesis for platform cost is that as platform cost changes, the probability of interaction 

between agents will change  

 

Model Classes & Methods: ConstrucshareModel, MemberAgent, Post, Item, Network Grid, 

Relationship 

 

Overview of all the classes and methods defined for the simulation model 

 

Libraries Used: Mesa, NumPy, Math, Matplotlib, UUID, Pandas, Copy, Collections, Itertools, Numbers, 

Typing, Warnings, Networkx, Random, Datetime. 

 

Primary resource classes like ‘Post’ and ‘Item’ created to ease the process of modelling agent behaviours 

later for the main model and agent classes.  

Fig 3: Effect of platform fee 

Fig 4: All Classes and 

Methods 
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‘Post’ class object has basic variables defined under the constructor as shown below with two additional 

methods: get_datetime() for retrieving the date and time of post creation and get_post_details() to get a 

list of the post particulars like id, type, item, category, etc. 

 

Post Attributes Initial Set Value Use case 

post_id *Input when a post 

object is defined 

Unique ID assigned to each post for identifying 

post_type *Input when a post 

object is defined 

Kind of post like Purchase/Rent for buyer request post  

and Sale/Lease for seller post  

post_datetime Current date, time Assign timestamp for the date and time of post creation 

post_tag None If a seller post matches buyer request, the request id is tagged here 

func_tag None Next function to be called is tagged for correct execution of actions 

next_role None Assigned as 1 for buyer or 2 for seller for next agent’s action 

item *Input when a post 

object is defined 

Stores item object which pertains to this post object 

item_cat *Input when a post 

object is defined 

Category of the item assigned to this post object 

times_negotiated 0 Counter for negotiation cycle 

buyer_seller None Tuple (buyer, seller) to keep track of the agents for this post object 

payment_mode None Tracks direct deal or via platform dealing 

delivery None Tracks method of delivery – self-collect or on-site delivery  

owner None Subordinate variable to storing seller id of the post creator 

original_item  None Subordinate variable for storing item to avoid duplication 

 

‘Item’ class object has 4 basic variables defined under the constructor as shown below with a category 

method: set_category() which choose a random category from the 8 categories under Construcshare. 

 

Item Attributes Initial Set Value Use case 

item_id *Input when item object is defined Unique ID assigned to each item for identifying 

count *Input when item object is defined Stores available number of units of this item  

curr_price *Input when item object is defined Stores the price assigned for the item 

category  Assigned via set_category method() Stores the category that the item belongs to 

 

Creating the environment of the simulation model, a subclass of mesa.Model is initiated as 

‘ConstrucshareModel’ class which takes 4 major inputs (marked in green) while running the model 

to standardise some of the dynamic aspects of the website and make it scalable for the model. Under 

the constructor method, different attributes of the model shown below are initialised as well as agent 

classes are initialised within a grid network(space) with added along a scheduler(time) calling the 

agent behaviours in staged order of execution. The methods defined are:  

o step() which calls the scheduler’s step method executing the agents' behaviours in the stages order 

using ‘act’ function, mentioned in model_stages while initialising the model. Updating the state of 

the simulation at each time step, looping through the nodes in the grid and using the neighbouring 

nodes, average interaction intensity their interaction is updated in the network. Also, the step 

method updates the interaction intensity of each agent's edges in the network by reducing them 

uniformly by 20% to take into account repeated interaction intensity, which depreciates.  

o run_model() performs the step function cycle for 200 iterations to manage the agent actions for 

200 steps maximum so that interaction data can be collected in the data collector set up, which can 

be used to drive more consumer-specific decisions for Construcshare. 

 

Model Attributes Initial Set Value Use case 

file_name *Input when model 

executed 

Name of file used for similarity mapping of agents: 

follower_data.csv 

file_path Path to data folder Stores path of file for extraction of data 
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num_items *Input when model 

executed 

Stores initial number of items introduced in model 

num_agents *Input when model 

executed 

Stores initial number of agents introduced in model 

agents_dict Empty Dictionary Maps agent’s unique id as key and agent object as value 

platformcost *Input when model 

executed or default as 0.04 

Stores proportion of amount charged to sellers when selling or 

leasing via the platform – assessed through model 

existing_items Empty List List of all item objects 

items_not_allocat

ed 

Empty List Supplementary list of items not allocated or dealt under the model 

existing_listings Empty List List of current seller post listings 

existing_requests Empty List List of current buyer request posts 

item_counter 0 Increments with item’s count for carrying out the model steps 

agent_counter num_agents Earlier set to initial number of agents – changes as more agents 

added 

current_id 0 Arbitrarily initialising of current model for next model to be called 

grid NetworkGrid object Creates grid instance to monitor model’s space component 

interaction_intens

ity 

Sum of grid edge 

interaction 

Using grid, calculating sum of interaction over the edges and 

between agent nodes in the network 

schedule Time scheduler StagedActivation scheduler used for model’s time component to 

execute each stage of action one after another – here implemented 

using act() function of the agents, not time component entirely 

running True Boolean variable to manage current state of model - running or not 

datacollector DataCollector Mesa’s Data collector component to record interaction and average 

interaction data as the agent actions are executed 

 

‘Relationship’ class was created to specifically apply the follower data provided by Construcshare to 

map the initial relationship between agent nodes in the network. It follows the rationale that if a user 

follows another user: the edge weight is higher showing more similarity of the nodes. Initially, the 

idea was to use calculated Jaccard similarity for this purpose but after feedback, a shift was made for 

using their follower data as a basis for the Jaccard similarity indicator for the node relation. The 

method defined is: create_relationships() which uses the input follower data frame to initialise a 

dictionary mapping the follower user id to following user ids after string manipulations in the 

followings dictionary created to extract the ids from the list. The relationship score is then calculated 

and assigned in the relationship dictionary of the class based on the following two conditions: 

o if agent 1 follows agent 2 then the score is increased by 5 arbitrarily. 

o if both agent 1 and 2 follow each other, the score is updated by sum of each other’s score to 

signify a stronger initial relationship hence greater similarity between the agent nodes. 

 

Relationship 

Attributes 

Initial Set Value Use case 

relationship Empty Dictionary Stores each user’s ID as key and their relationship score based on 

the users that they are following  

follower_dat *Input when 

relationship is defined 

Stores the data frame from reading the input followers_data_path 

 

‘NetworkGrid’ class is like the space component of the model implemented for simulating 

Construcshare as a network of agent nodes shown as a graph where each node represents an agent and 

edge represents their interaction. There are three attributes defined under the constructor as seen 

below which are integral in assigning nodes to their position in the grid based on the ‘NetworkX’ 

architecture. 

Grid Attributes Initial Set Value Use case 

G *Input when new network initialised NetworkX graph instance stored 



 7 

 

Some methods which have conventional and pre-defined functions are shown below which are mainly 

used for either updating the grid via adding, removing, moving agents to recalibrate the interaction. 

 

 

To model the complete Construcshare environment, an agent class is defined called ‘MemberAgent’ 

to signify that each agent represents a member of the Construcshare community as they can only start 

dealing after registering on the platform. This agent class uses the pre-defined class ‘mesa.Agent’, 

which is commonly used in agent based simulations with the pre-fed variables unique_id and model, 

distinguishing each agent from another using the id and model defined for the setup environment, 

along with other attributes explicitly defined in the constructor method as seen below. 

 

Agent Attributes Agent Role Initial Set Value Use case 

desired_items Buyer *Input when a 

buyer is defined 

List of items that the buyer needs or has requested for 

inventory  Seller *Input when a 

seller is defined 

List of items available for sale or lease  

requests Buyer Empty List List of all buyer requests made 

posts Seller Empty List List of all seller posts created  

pending_actions Buyer & Seller Empty List List to monitor and keep track of pending actions for the 

user so they can fulfil these before moving to next action 

wtp Buyer *Input when a 

buyer is defined 

Dictionary using item id as key and buyer’s respective 

willingness-to-pay for that particular item as a value  

wts Seller *Input when 

seller is defined 

Dictionary using item id as key and seller’s respective 

willingness-to-sell for that particular item as a value  

path *Input when new network initialised Stores the edge paths of the graph 

similarities Assigned  to Relationship class based 

on given path  

Stores the Relationship class for similarities of nodes 

based on their follow behaviour 

Grid Method Input Purpose Description Output 

add_agent() Agent 

class 

Adds a new node to 

the graph with its 

neighbours 

New node with jaccard value set to 0 is added then 

iterating through all the nodes in the graph, edge is 

created for new node and jaccard value is changed 

if other nodes have a relationship with new node 

else jaccard value set randomly between 0 and 1 

with interaction set to 0. 

Calls 

place_age

nt() 

function 

place_agent() Agent and  
node_id 

Positions a given 
agent in a node 

Sets agent position to the node_id and add the agent 
to the agents list under node of graph instance G 

None 

get_neighbors node_id, 

include_c

enter, 

threshold 

Gives all neighboring 

nodes within a 

threshold 

Among the list of neighbours of the node_id, if 

distance between them is within a threshold then 

node is added to the neighbour’s list with decision 

to including the centre or not 

List of 

neighbour

ing nodes 

set_interaction

_edge 

Start and 

end node, 

new_val 

Set interaction of an 

edge between two 

nodes 

Set the interaction value of the edge from start to 

end and end to start node as the new_val given 

None 

move_agent Agent and 

node_id 

Moves agent to new 

node 

Calls remove and place agent for fresh initialised 

placement using node_id 

None 

remove_agent Agent Discard the agent 

from the network 

Removes agent from list of agents under G and sets 

the position as None 

None 

is_cell_empty node_id Checks the cell Checks if contents of the cell is empty or not True/False 

get_cell_list_c

ontents 

List of 

cells 

Getting the agents 

from cell contents 

Lists agents contained in the cells of cells_list List of the 

agents 

get_all_cell_c

ontents 

List of 

agents 

Getting all agents Lists all agents in the network List of all 

agents 
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log Buyer & Seller Empty List List of all past actions taken by agent 

avg_interaction Buyer & Seller 0 Integer to represent the interactions based on actions 

taken by the agent  

next_req Buyer & Seller None Stores request post if linked with a listed seller post 

next_fulfil Buyer & Seller None Stores the post which the agent interacted with and 

confirmed price for fulfilment of order 

money Buyer & Seller 100 Placeholder value used under fulfilling 

pos Buyer & Seller 0 Shows position of agent 

interactions Buyer & Seller Empty Dictionary Dictionary to record the interactions  

Method Input Purpose Description Output 

make_ 

buyer_ 

req 

None Creates 

a new 

buyer 

request 

post 

If the desired items list is not empty, buyer chooses an item object randomly 

from its desired items which does not have an existing request post.  

A post object is created using title, request type (purchase, rent or both) and 

unique ID assigned to the created request and the buyer_seller tuple is set to 

indicate self as the buyer. This request is then added to the buyer's requests as 

well as the model.existing_requests and returned. 

Created 

request 

(Post 

object) 

delete_ 

request 

Reque

st  

Discard 

request 

Loop over the model.existing_requests and buyer’s requests to match the 

required post_id and remove it from both the model and agent’s request list. 

None 

view_ 

listings 

None Shows 

buyer’s 

browsin

g action 

First, the agent checks for the presence of neighbouring node posts, randomly 

selecting one for viewing. If there are no neighboring posts, it selects a post 

randomly from model’s existing_listings. 

Then the item associated with the selected post is checked against the buyer's 

desired items and a copy of the post is created to express interest in that listed 

seller post, setting the agent’s buyer_seller attribute as self and seller who 

created the post.  

Lastly, if the buyer's willingness-to-pay for that item is less than the item price, 

need to move to negotiation so the func_tag is set to negotiate. Else, the price is 

suitable so the func_tag is set to confirm_price method, and the post is added in 

the pending_actions list of the buyer and returned. 

Listed 

post 

copy 

(Post 

object) 

create_ 

post 

None Creates 

new 

seller 

post 

Firstly, if the next_req attributes is not None, means the post creation is 

triggered by an existing request. Else, if not previously linked to buyer request, 

it is a fresh post triggered by seller. The particular details of the post like item, 

category, post type, payment mode, delivery method, etc are set randomly from 

the options available on the website or set arbitrarily for text entries based on it 

being a sale or lease post accordingly.  

New post object is defined and looped over the existing requests to check if the 

new post matches a request, which is added as post_tag and the agent’s 

buyer_seller attribute is set based on the seller who created the post and buyer 
if it matches a request else set as None. Finally, this new post is added under 

existing_listings and seller’s posts list with post’s owner set as the seller id. 

None 

delete_ 

post 

Seller 

Post  

Discard 

a post 

Matches the seller post id with the contents of existing listings and seller posts 

and removes it from both the lists 

None 

 

view_ 

requests 

None Shows 

seller’s 

browsin

g action 

of buyer 

requests 

Seller chooses a request post randomly from the existing_requests for viewing. 

Then, this selected request is checked if it has an existing seller post using 

post_tag else, the item indicated in the selected request is checked if it has 

enough quantity in the seller’s inventory followed by calling create_post(), 

setting next_req to the selected request – used to model potential posts scenario 

After this, the seller is added to the buyer's interaction dictionary and the grid, 

increasing the interaction value by 2 to represent edge between the buyer and 

seller as they interact over a post. 

None 

Moving to the methods which tie around these attributes together for carrying out each agent behaviour seen across 

the platform from the perspective of buyer and seller. 
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fulfil None Complet

es a 

purchas

e, sale 

or lease 

transacti

on 

The post sent for fulfilment of order is retrieved using the agent’s next_fulfil 

attribute and then the post is deleted for both agents, item removed from their 

desired items and their respective willingness to pay and sell for that item is 

removed as order is being processed so post and item is no longer active.  

Also, the item is updated in each agent’s inventory which allows circular 

trading scenario so buyer adds the purchased item to their inventory for resale 

and removed from seller’s inventory. 

The interaction for this fulfilment action is increased by 5 for the seller with 

regard to the edge in the grid between the seller and buyer. 

Lastly, another round of checking is done to ensure post and item are removed 

from all pending_actions, other agent’s existing posts to finish this transaction. 

None 

confirm

_price 

None Implem

ents the 

final 

quoted 

costing 

for an 

item 

Retrieves the last added post from pending_actions and based on the next_role 

attribute of this post, buyer and seller action for final price quoting is done. 

 

If the role is buyer, the buyer will confirm the price and irrespective of the 

payment mode, post will be removed from requests and func_tag will be set to 

fulfil for next_role as seller to move to fulfilment. 

 

If the role is seller, seller’s choice in payment mode is considered so simple 

deduction from placeholder value in ‘money’ attribute else addition of platform 

fee to the final price if via Construcshare payment gateway and func_tag set to 

fulfil for next_fulfil set as the current post to move to fulfilment of order. 

 

negotiat

e 

None Conduct 

negotiati

on 

cycles 

for two 

rounds 

Models the negotiation cycle of the transaction wherein the last added post 

from pending_actions is selected and negotiation based on the next_role 

attribute to represent which agent called the action of negotiation. 

 

When called by buyer, there are three states available: 

1. If buyer’s willingness-to-pay is greater than or equal to the item’s price 

then confirm_price() is called by the buyer - Accepting the transaction 

2. If 4 negotiations (2 cycles) performed then, transaction terminated with 

respect to low patience level of agents – Termination of transaction 

3. Else when buyer’s willingness-to-pay is lower than price and negotiation 

limit has not reached 4 yet, then a round of negotiation is initiated. In a 

negotiation round, the price is reduced based on a 10% difference as a 

buyer offer and then the role switches to seller to approve/disapprove of 

this buyer offer based on their willingness-to-sell, setting func_tag to 

negotiate for initiating next round of negotiation. 

 

When called by seller, there are three states available: 

1. If seller’s willingness-to-sell is lesser than or equal to price then accepted 

and confirm_price() is called by the seller 

2. If 4 negotiations (2 cycles of back and forth) done and yet the price 

differences are not suitable, then terminated 

3. Else, seller offer is proposed using the same rules as before to set 

next_role as buyer for them to approve/disapprove of the new seller offer, 

assigning func_tag to negotiate for initiation of next round of negotiation 

to be called. 

 

Similar to other methods, negotiation interaction for buyer is added in the grid 

of seller interactions dictionary and score increased by 5 to update the edge 

between the buyer and seller performing negotiation action. 

 

 

None 
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Rough drawing for an example run applying all defined methods 

Example Run: Buyer ‘b’ browses the website and wants to buy an item ‘t’ 

1. The act function triggers make_buyer_req() for item ‘t’ and this request is added to b’s requests.  

2. A seller ‘s’ calls view_requests() and a new post for it is created using create_post(). 

3. This post is added as a listing so ‘b’ views the listings via view_listings(). 

4. Suppose b’s willingness to buy is lower than price of ‘t’, there is a trigger to negotiate() from ‘b’ 

5. ‘b’ suggests an offer to ‘s’, which is assessed by ‘s’ but let’s say willingness to sell for ‘s’ is higher 

so buyer offer is not accepted and an offer is sent by seller ‘s’ for ‘b’ to assess with a new 

negotiate() call. 
6. The new offer is within the willing to pay so b accepts it within negotiate, calling confirm_price(). 

7. The buyer gets the final price quotation and the order moves to fulfilment via fulfil() called. 

8. The post and request for item ‘t’ is discarded and other variables are updated for the respective 

buyer ‘b’ and seller ‘s’. 

 

Agent Behaviour and Interaction Methods 

Agents: Member of the Construcshare website, who can be a buyer, seller or both 

Agent State(s): Assessing current members and new members, there is a state of active and inactive 

users wherein, initially each member is considered active. Also, the agent can be at multiple stages of 

the transaction flow and the end state is usually a fulfilled transaction or a rejected transaction, which 

will be explained further as agent behaviours. 

act None Respons

ible for 

calling 

function 

in order 

for   a 

complet

e cycle 

The idea of this function is to make sure all the actions are called in sequence 

and it initiates the stages of actions. The current role and action_type is 

randomly called to start the transaction.  

1. If curr_role is buyer: 

- If curr_action_type is 2 (previous action) and the model has existing 

listings, the first action called is view_listings() – mainly for starting a 

new transaction from scratch from buyer’s side. 

- If  curr_action_type is 3 (previous action) but the buyer has pending 

action, the post with pending action will be extracted and the previous 

action which was interrupted or left idle will be finished first, calling the 

previous action method to be called – continuing transaction. 

- If curr_action_type is 1 (new action) and no existing listings or pending 

actions then buyer makes a request calling make_buyer_req() – 

facilitating the seller to act in the transaction. 

2. If curr_role is seller: 

- If curr_action_type is 2 (previous action) and the model has existing 
requests, the first action called is view_requests() – mainly for start 

reaction from seller’s side. 

- If curr_action_type is 3 (previous action) but the seller has pending 

action, the post with pending action will be extracted and the previous 

action which was interrupted or left idle will be finished first, calling the 

previous action method to be called – continuing transaction. 

- If curr_action_type is 1 (new action) and no existing requests or pending 

actions then seller creates a new post calling create_post() – facilitating 

the buyer to act in the transaction. 

None 

Fig 5: Application run of methods 
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Agent Behaviours: Website interaction and engagement is monitored and the specific behaviours 

assessed are expressing interest by viewing posts, requests, negotiation, successful transaction. The 

order of actions considered for interaction are: 

1. Expressing interest in post – request is viewed for interaction so value updated by 2 

2. Negotiation – value updated by 5 

3. Successful purchase – order fulfilled so value updated by 5  

 

Flowchart of agent behaviour: 

The methodology followed in this paper set the basis for our project 

execution where they use agent based simulation to test how different 

business strategies affect the behaviour of sellers, suppliers and consumers 

on a B2C sales website. Their source idea for developing the interactions 

between ‘ConsumerAgent’ and ‘SellerAgent’ (as seen in figure 6) gives a 

detailed analysis factors influencing user behaviour by modelling the 

actions taken by consumers as they interact with e-commerce platforms. 

These interactions are fed into a utility function to quantitatively monitor 
the effects and identify consumers with similar behaviours or needs for 

targeted strategy planning(Čavoški & Marković, 2017).  

 

Using the above idea, we modelled the actions specific to 

Construcshare to quantify their interaction instead of modelling all 

the social behaviours described in the figure 6. Similar to utility 

function, the interaction calculations were used, where each action 

has a different utility (interaction score increment) hence a different 

effect on their engagement. This engagement was shown as a 

network of agents which can be visually comprehensive rather than 

just tabular calculations. The figure 7 shows the cycle of 

completing a transaction involving buyer(orange icons) and 

seller(blue icons) actions where agent has the freedom to 

accept(green arrows) or reject(red arrows) or continue negotiating 

to maximum two cycles (yellow arrows) during a transaction. 

 

Flowchart of all components: 

1. Model is initialised with the required 4 

inputs(agents, items, platform fee, follower_data) 

and run some iterations where each agent performs 

an action and they interact with each other – giving 

insight into which users interact more and have 

more chance of bringing a new user to onboard.  

2. Agents acting as Buyer or Seller and interacting 

with one another to conduct a transaction leading to 

fulfilment or rejection 

4. Datacollector works during every transaction to 

collect data based on actions like viewing requests, 

negotiating and successfully completing a 

transaction (captured parts shown with blue 

arrows), which add to the interaction values for 

plotting in the network grid. 

 

Docker & API Component (model_api.py, Dockerfile, docker-compose.yml, requirements in ‘code’) 
The API works using flask application to host the results on port 5000 using mesa container. It extracts 

the network grid using network_plots() to output two graphs: one using followers data, which can be 

uploaded using upload(), for initial relationship values, second using actions taken by agent for 

interaction values and a table, showing the interaction and similarity values over 50 iteration steps.  

Figure 4: Agent Behaviour Reference 

Fig 6: Reference Implementation 

Fig 7: Agent Implementation 

Fig 8: Complete Working Implementation 
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Running in docker: Firstly, set up working directory to the code folder then use ‘docker compose up -

d’ to get the container up and running. Then call ‘export FLASK_APP=model_api’ followed by ‘flask 

run’ and 4 inputs required to start flask application on http://127.0.0.1:5000 

 

Data processing (Script:code/DataCleaning.ipynb)(csv file: code/Final_code/data/follower_data.csv) 

The main source of data provided were the follower, order and post logs, along with some audit logs 

however, with repetitions and test entries. Using pandas and numpy, some basic manipulations and 

column mappings were done then cleaned up using group by, filter, merge and irrelevant columns were 

dropped to combine only the relevant ones. The pre-processed data table contained 7 unique transactions 

out of which, the 11 follower user ids were filtered with their respective list of following user ids, which 

is used as an input for the model. The model can use dynamic data tables to alter the relationship of 

nodes based on the follower ids, making it suitable for the users to see the difference over time. 

 

Impact of solution for User 

Construcshare can use these graphs as an indicator for their future predictions and strategies to gauge 

the customer behaviour so they can tailor features for each user. 
 

Theoretical Output Network Grid Analysis 

Network grid shown as the outcome because the relation between nodes is affected 

by multiple factors so graph is a better medium to display them. 

There are two major aspects shown in the graph below: 

Similarity based on Initial Relationship: Using follower user data, if two users 

followed each other then they are highly related – higher similarity while those that 

don’t will be further from each other as less related – lower similarity. This 

relationship is updated by value 5 so if one follows another then value added by 5 

and if both follow each other (two-way) then value is twice that is 10 is added so 

higher score, lesser distance between nodes so higher similarity. 

Interaction between nodes: Using datacollector and actions taken by agents, the 

interaction is calculated for each user so if higher interaction value, thicker edge 

between the nodes while for lower interaction, thinner edge. When a user registers, 

a thin edge is attached with other agents, and as they perform actions, this edge gets 

thicker, which differs over time based on their activity on the platform. 

 

 

Model Results 

The intermediate results for 

test_model set using 2 

agents, 5 items, run for 5 

steps, which traces the 

transition from one action 

to another to see how the 

agents act at each timestep 

when platform fee is 0.04.  

The table even shows 

average interactions over 

the 5 steps. 

 

The final results that can be used for insights source from the network grid graph and the table shown 

below (displayed in flask application). The below graphs were generated for 8 items, 5 agents run for 

50 iteration steps with platform fee set to 0.02 and the results show the agent interaction values and 

relationship similarity values are marked on the edges in figures 11 and 12 respectively. In the 

implementation below, the thickness and similarity distance between nodes cannot be shown visually 

as seen in figure 9 above so the respective values are rounded and assigned over the edges like figure 

11: Interaction values on edges and figure 12: Relationship similarity values on the edges, and their 

actual calculated values can be seen for each agent and each edge in the figures 13 and 14 respectively. 

Fig 9: Grid Understanding 

Fig 10: Intermediate Runs Breakdown by steps 
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These graphs can help drive insights like agents 1 and 4 having prior follow relation (10) caused most 

interaction (2.73), so these are more likely to have greater activity and more chance of bringing new 

users to the platform. Between agents 3 & 4 and agents 2 & 4, although both don’t have a strong follow 

relationship with each other, their interaction levels differed, which means there is an external factor 

like word-of-mouth or historical data connection which has caused a difference. 

 

Value-added for Construcshare 

• Regular Monitoring: the platform can monitor the impact of changing a feature on existing users' 

engagement and user onboarding. Like platform fee, other features can be altered to see the effect. 

• Predict & Plan: Based on simulation, the team can deploy the features that draw value without 

additional spending on research and enhance the speed of decision making. 

• Competitive Advantage: Being aware of the ‘cause and effect’, features more suited to consumer needs 

and wants based on our low-cost and low-risk simulation model, aligning the logistics and marketing 

well in time to be ahead of competitors. 

 

Limitations 

Project Limitations: The scale of data was not pre-defined; the initial datasets contained mainly test 

entries and some were irrelevant for the model scope, so internal model testing with synthetic data or 

arbitrability set values was done as there was no real-time data to validate the model with actual users. 

Model Limitations: The graph shows the interactions between fixed number of agents and items, which 

can only be changed when the model is initialised so the user onboarding for new users can only be 

seen as an insight on current users but cannot be shown visually in the graph by adding new nodes. 
Since, the development team at Construcshare rolled out new changes and features, we did not have 

enough time to model all changes. The element of uncertainty in the project helped us explore different 

aspects of the model but also brought ambiguity on the model satisfying the need of the company.  

 

Future Considerations and Improvements  

1. Once there is enough data available, the model can be changed to show updates in real-time, which 

is a popular requirement by e-commerce websites. Also, additional data can help in the inclusion of 

other two objectives of maximising reach and transactions. 

2. Improvement in the way the graph edges change with each feature change can be enriched with 

more parameters in model for a more hands-free and visual experience for users via the native app. 

3. Similarity metric can be enhanced from initial follow relationship to using agent’s interest during 

sign up, company domain, inventory, items purchased, etc to define similarity between nodes. 

4. Integrating such graph approaches for a recommendation system for buyers and sellers like many 

popular e-commerce websites so easier navigation across the website. 

Fig 11: Agent Interaction Graph Fig 12: Relationship-Similarity Graph Fig 13: Agent-wise similarity and interaction 

Fig 14: Edge-wise Interaction and Similarity (jaccard)  



 14 

Appendix: References (APA style) 

 

1. Bokor, O., Florez, L. T., Osborne, A. G., & Gledson, B. (2019). Overview of construction 

simulation approaches to model construction processes. Organization, Technology & 

Management in Construction, 11(1), 1853–1861. https://doi.org/10.2478/otmcj-2018-0018 

 

2. Kazil, J., Masad, D., & Crooks, A. (2020). Utilizing Python for Agent-Based Modeling: The 

Mesa Framework. Lecture Notes in Computer Science, 308–317. https://doi.org/10.1007/978-

3-030-61255-9_30 

 

3. Masad, D., & Kazil, J. (2015). Mesa: An Agent-Based Modeling Framework. Proceedings of 

the Python in Science Conferences. https://doi.org/10.25080/majora-7b98e3ed-009 

 

4. Farooq, M., Shakoor, A., & Siddique, A. (2021). Agent-based modeling and simulation in the 

analysis of e-commerce market. 2021 International Conference on Frontiers of Information 

Technology (FIT). https://doi.org/10.1109/fit53504.2021.00060 
 

5. Urdea, A., & Constantin, C. P. (2021). Exploring the impact of customer experience on 

customer loyalty in e-commerce. Proceedings of the . . . International Conference on Business 

Excellence, 15(1), 672–682. https://doi.org/10.2478/picbe-2021-0063 

 

6. Inoue, Y., Takenaka, T., & Kurumatani, K. (2019). Sustainability of Service Intermediary 

Platform Ecosystems: Analysis and Simulation of Japanese Hotel Booking Platform-Based 

Markets. Sustainability, 11(17), 4563. https://doi.org/10.3390/su11174563 

 

7. Čavoški, S., & Marković, A. S. (2017). Agent-based modelling and simulation in the analysis 

of customer behaviour on B2C e-commerce sites. Journal of Simulation, 11(4), 335–345. 

https://doi.org/10.1057/s41273-016-0034-9 

 

8. Code References: https://github.com/projectmesa 

 

 

 

https://doi.org/10.2478/otmcj-2018-0018
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.25080/majora-7b98e3ed-009
https://doi.org/10.1109/fit53504.2021.00060
https://doi.org/10.2478/picbe-2021-0063
https://doi.org/10.3390/su11174563
https://doi.org/10.1057/s41273-016-0034-9
https://github.com/projectmesa

